大数据矩阵计算基础(一):矩阵运算,转置,矩阵的逆,行列式

本文介绍了大数据背景下的矩阵概念,包括矩阵的定义、相等、方阵、单位矩阵、负矩阵、上/下三角阵及对角矩阵。讨论了矩阵的线性运算如加法、减法和数乘,矩阵乘法的性质,转置矩阵,以及逆矩阵的求解方法和性质。此外,还提及了行列式的定义和性质。
摘要由CSDN通过智能技术生成

矩阵的概念

问题提出: 运动会成绩记录问题

学院运动会有数学、物理、化学、生物、地理、环境六个系参赛。每项赛事限报1 人。每项赛事取前五名记分并发奖金。前五名分别记7、 5、 3、 2、 1分,分别发奖金100、70、 50 、 20、 10 元。接力赛项目得分倍奖金增加4 倍。请列出各项比赛成绩明细表。

矩阵:由m*n个元素aij(i = 1,2, … …;j= 1,2, … … )排成的m行n列的有序列表

称为m行n列矩阵,简称m*n矩阵,常用大写字母A,B,C等表示。

可记为A = Am*n =(aij)m*n=(aij)

  • 称A为行向量或是列向量
  • 元素是实数的矩阵称为实矩阵
  • 元素是复数的矩阵称为复矩阵

矩阵相等

对于两个矩阵A和B,当它们的行数相同,列数相同,并且对应位置上的元素都相等时,称矩阵A与B相等,记住A=B。

即aij = bij,对所有i=1,2,……,m;j=1,2,……,n都成立.

若两个矩阵行数与列数分别相等, 则为同型矩阵 
同型矩阵

方阵: 当m=n时,我们称矩阵A为n阶方阵

单位矩阵: 主对角线上全是1,其余位置上全是0的方阵称为单位矩阵,记为I或E;或 In,En

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值