算法4(一、递归学习)

每次用递归都感觉有点难,这个趁着恶补基础知识的时候,专门看了一遍递归,算法4的。

1.1 递归介绍

方法可以调用自己,例如:下面给出了bin_search的二分查找的一种实现。(算法4中使用的是Java,但是我是c++系的,就用c++实现,语言不重要)。我们就会经常使用递归,因为递归代码比相应的非递归代码更加简洁优雅、易懂。下面这种实现中的注释就言简意赅地说明了代码的作用。

int bin_search(int key, int *a, int left, int right)
{
    //递归第一条,总是包含一个return的语句
    if(left > right) return -1;

    int middle = left + (right - left)/2;
    if(key < a[middle])  bin_search(key, a, left, middle-1);\
    else if(key > a[middle]) bin_search(key, a, middle+1, right);
    else return middle;
}

编写递归代码时最重要的有以下三点。

  1. 递归总有一个最简单的情况——方法的第一条语句总是一个包含return的条件语句。
  2. 递归调用总是去尝试解决一个规模更小的子问题,这样递归才能收敛到最简单的情况。在上面代码中,第四个参数和第三个参数的差值一直在缩小。
  3. 递归调用的父问题和尝试解决的子问题不应该有交集。在上面代码中,两个子问题各自操作的数组部分是不同的。

违背其中任意一条都可能得到错误的结果或低效的代码,而坚持这些原则能写出清晰,正确且容易评估性能的程序。使用递归的另一个原因是我们可以使用数学模型来估计程序的性能。这个要在后面讲。

1.2 练习

看了递归的总结了之后,要做做练习题,控固一些递归的知识点,所以就做算法4,第一节的练习题。

1.1.16 给出exR1(6)的返回值

string exR1(int n)
{
    if(n < 0) return "";
    return exR1(n - 3) + n + exR1(n - 2) + n;
}

int main()
{
    cout << "递归代码学习" << endl;

    string str = exR1(6);
    cout << str << endl;
    return 0;
}

c++好像不知道string加法,不过就这样吧,我们不执行了,直接推结果。
在这里插入图片描述
这里已经把递归的流程分析,递归分析不用慌,一层一层分析,知道返回的时候,就有结果了,这道题的答案是:311361142246。

1.1.17 找出一下递归函数的问题

string exR2(int n)
{
    string s = exR2(n -3)+ n + exR2(n -2)+ n;
    if(n < 0) return "";
    return s;
}

这一个是违反了递归的第一条性质,也就是第一条不包含return语句,这样导致递归函数一直递归,知道把栈搞溢出。

1.1.18 请看一下递归函数

int mustery(int a, int b)
{
    if(b == 0) return 0;
    if(b % 2 == 0) return mustery(a+a, b/2);
    return mustery(a+a, b/2) + a;
}

mustery(2, 25)和mustery(3, 11)的返回值是多少
在这里插入图片描述
这个递归比较简单,只要一个方向递归,像第一题两个方向递归才难。

1.1.19 在计算机上运行一下程序

long F(int N)
{
    if(N==0) return 0;
    if(N==1) return 1;
    return F(N-1)+F(N-2);
}

计算这段程序在一个小时之内能够得到的F(N)结果的最大N值是多少?这个有谁知道,可以讲解一波,我也不清楚。
开发F(N)的一个更好的实现,用数组保存已经计算过的值。

long F2(int N, long *value)
{
    //static long *value = new long[N];

    if(N == 0)
    {
        value[0] = 0;
        value[1] = 1;
        return 0;
    }
    if(N == 1)
    {
        value[0] = 0;
        value[1] = 1;
        return 1;
    }
    //printf("N %ld %ld %ld\n", N, value[N-1]+value[N-2]);
    value[N-1] = F2(N-1, value);
    return value[N-1]+value[N-2];
}

递归函数还是一贯都是开始是return,因为我们要从0,1开始,所以0,1需要做特殊处理,然后从2开始的话,我们就递归算出每个数组的值,然后利用已经保存好的数组的值,然后在相加,就得到了想要的结果。

1.1.20 编写一个递归的静态方法计算ln(N!)的值

unsigned long jieceng(int N)
{
    if(N == 1 || N == 0) {
        return 1;
    }

    return jieceng(N-1)*N;
}

这是阶乘的答案

个人觉得是我见过的最简单易懂的算法入门书籍。 以前搜刮过几本算法竞赛书,但是难度终归太大【好吧,其实是自己太懒了】。 略翻过教材,大多数水校的教材,大家懂的。好一点的也是那本国内的经典,不是说它写的不好,只是没有这一本好。 本书Java实现,配有大量的图解,没有一句难懂的话,而且全都是模块化实现。 讲的都是实用算法,没有那些高大上听着名字就让人感到很害怕的东西,个人觉得比CLRS实用性要强,更加适合入门的学习。 大一,推荐这本书入门 【有C语言基础即可,自己去搜索下如何用Java写出Hello World就没有问题】 大二,推荐这本书从头到尾好好读一遍,做下上千道的课后习题 【后面的有点小难度,但是难度不大值得一做,听起来很多的样子,用心去做,相信很快就可以做完的】。 大三,推荐这本书,重新温习已知算法,为找工作,考研做准备。 【可以试着自己在纸上全部实现一遍】 大四,依旧推荐这本书,没事重温经典,当手册来查也不错。 Sedgwick 红黑树的发现者,Donald E.Knuth 的得意门生,对各种算法都有比较深入的研究,他的书,我想不会太差。 也许对于数据结构的学习涉及的内容比较少,没有动态规划,图论也只是讲了很基础的东西,字符串中KMP弄的过于复杂(对比于acm)。但是瑕不掩瑜,对于绝大部分内容真的讲的超级清楚,完美的图解,就像单步调试一样,也许是一本不需要智商就能看懂的算法书(习题应该略有难度,还没有做,打算上Princeton的公开课时同步跟进)。至少这是一本让我这个算法渣渣看了爱不释手,怦然心动的书。 完美学习资源: 官方主页:http://algs4.cs.princeton.edu/home/ Coursera公开课:https://www.coursera.org/course/algs4partI (听说已经开课两期了,最近即将开课的时间是2014/09/05号那期,希望有兴趣的同学一起来学习)。 MOOC平台(笔记、讨论等): http://mooc.guokr.com/course/404/Algorithms--Part-I/ http://mooc.guokr.com/course/403/Algorithms--Part-II/ 不得不吐槽,他的lecture比他的书好,他本人讲的课更是一绝。 互补课程: 斯福坦的Algorithms: Design and Analysis, http://mooc.guokr.com/course/157/Algorithms--Design-and-Analysis--Part-1/ 快毕业了才接触到豆瓣和MOOC,看到很多经典的书籍都是推荐大学一二年级的学生看,每每想到自己却连书皮都没有摸过,就深感惭愧。 我们都老的太快,却聪明得太迟。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值