时间序列模型的相关概念以及Matlab拟合ARIMA(p,d,q)模型

本文详细介绍了时间序列模型的统计概念,包括均值、方差、自相关系数和偏自相关系数等,并探讨了AR(p)、MA(q)和ARMA(p,q)模型的性质。通过示例展示了如何对非平稳序列进行差分,以达到平稳状态,并利用ARIMA模型进行数据预测。最后,通过实际数据展示了如何识别和拟合ARIMA模型,以及进行预测分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列模型

统计量:

通常,我们用 X t = { X ∣ t ∈ T } X_t=\{X|t∈T\} Xt={ XtT}表示一个时间序列, x 1 , x 2 , … , x n x_1,x_2,…,x_n x1,x2,,xn是观察值,时间序列有下面几个常用的统计量,这些统计量,为我们拟合时间序列模型做出准备.这几个统计量分别是均值,方差,协方差,相关系数,自相关系数,偏自相关系数

均值:

理论的均值函数
μ t = E ( X t ) μ_t=E(X_t ) μt=E(Xt)
均值的估计值
μ ^ = 1 n ∑ i = 1 n x i \hatμ=\frac{1}{n} \sum_{i=1}^nx_i μ^=n1i=1nxi

方差:

理论的方差函数
σ t 2 = D ( X t ) = E ( X t 2 ) − ( E ( X t ) ) 2 σ_t^2=D(X_t )=E(X_t^2 )-(E(X_t ))^2 σt2=D(Xt)=E(Xt2)(E(Xt))2
方差的估计值
σ ^ 2 = 1 n − 1 ∑ i = 1 n ( x i − μ ^ ) 2 \hatσ^2=\frac{1}{n-1} \sum_{i=1}^n(x_i-\hatμ)^2 σ^2=n11i=1n(xiμ^)2

差分

对序列1阶差分
Δ x t = x t − x t − 1 Δx_t=x_t-x_{t-1} Δxt=xtxt1
2阶差分
Δ 2 x t = Δ x t − Δ x t − 1 = x t − 2 x t − 1 + x t − 2 Δ^2 x_t=Δx_t-Δx_{t-1}=x_t-2x_{t-1}+x_{t-2} Δ2xt=ΔxtΔxt1=xt2xt1+xt2
P阶差分
Δ p x t = Δ p − 1 x t − Δ p − 1 x t − 1 Δ^p x_t=Δ^{p-1} x_t-Δ^{p-1} x_{t-1} Δpxt=Δp1xtΔp1xt1
P步差分
Δ p x t = x t − x t − p Δ_p x_t=x_t-x_{t-p} Δpxt=xtxtp
延迟算子
L x t = x t − 1 L i x t = x t − i Lx_t=x_{t-1}\\ L^i x_t=x_{t-i} Lxt=xt1Lixt=xti
常见的时间序列模型:
x t = ϕ 1 x ( t − 1 ) + ϕ 2 x ( t − 2 ) + ⋯ + ϕ p x ( t − p ) + ε t x_t=ϕ_1 x_(t-1)+ϕ_2 x_(t-2)+⋯+ϕ_p x_(t-p)+\varepsilon_t xt=ϕ1x(t1)+ϕ2x(t2)++ϕpx(tp)+εt
用延迟算子表示是
( 1 − ϕ 1 L − ϕ 2 L 2 − … − ϕ p L p ) x t = ε t (1-ϕ_1 L-ϕ_2 L^2-…-ϕ_p L^p ) x_t=\varepsilon_t (1ϕ1Lϕ2L2ϕpLp)xt=εt

平稳时间序列

白噪声序列

一个时间序列,如果完全符合正态分布,说明这个序列是白噪声序列,一旦时间序列通过了白噪声检验,说明这个序列已经没有了分析的价值,我们应该停止分析

白噪声序列满足条件
E ( X t ) = μ E(X_t )=μ E(Xt)=μ

γ ( s , t ) = { σ 2 , s ≠ t 0 , s = t \gamma(s, t)=\left\{\begin{array}{l} \sigma^{2}, s \neq t \\ 0, s=t \end{array}\right. γ(s,t)={ σ2,s=t0,s=t
记为 X t ∼ W N ( μ , σ 2 ) X_t∼WN(μ,σ^2) XtWN(μ,σ2)

白噪声检验

我们不加证明的给出预备理论:

1.如果一个序列是白噪声序列,那么这个序列的以非零延迟的自相关系数 ρ ^ k \hat ρ_k ρ^k近似服从方差为观察期数的倒数,均值为0的正态分布
ρ ^ k ∼ N ( 0 , 1 n ) , ∀ k ≠ 0 \hatρ_k∼N(0,\frac{1}{n}),∀k≠0 ρ^kN(0,n1),k=0
2.若 Y i ∼ N ( 0 , 1 ) , i = 1 , 2 , … , n Y_i∼N(0,1),i=1,2,…,n YiN(0,1),i=1,2,,n ,则
∑ i = 1 n Y i 2 ∼ χ 2 ( n ) \sum_{i=1}^nY_i^2∼\chi^2 (n) i=1nYi2χ2(n)
N个标准正态分布的平方和服从自由度n的卡方分布

原假设:延迟期数小于m的序列完全不相关

备择假设:延迟期数小于m的序列存在相关性

我们构造原假设 H 0 : ρ 0 = ρ 1 = ⋯ = ρ m H_0:ρ_0=ρ_1=⋯=ρ_m H0:ρ0=ρ1==ρm

备择假设 H 1 : ρ 0 , ρ 1 , … , ρ m H_1:ρ_0,ρ_1,…,ρ_m H1:ρ0,ρ1,,ρm 至少存在非零值

白噪声检验常用的统计量有两个

  1. Q统计量

Q = n ∑ i = 1 m ρ ^ k 2 Q=n\sum_{i=1}^m\hatρ_k^2 Q=ni=1mρ^k2
n是序列观测期数,m是指定的延期数

由于 ρ ^ k ∼ N ( 0 , 1 n ) , ∀ k ≠ 0 \hatρ_k∼N(0,\frac{1}{n}),∀k≠0 ρ^kN(0,n1),k=0,所以 n ρ ^ k ∼ N ( 0 , 1 ) \sqrt n \hatρ _k∼N(0,1) n ρ^kN(0,1) ,所以
Q = n ∑ i =

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Logistic..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值