岭回归与Lasso回归
为什么引入岭回归
传统的多元线性回归可能存在多重共线性,岭回归可以看作是传统多元线性回归的升级版,可以打破多重共线性的限制。
和多元线性回归相似,岭回归的参数估计也是采用OLS(极大似然估计)原理
多元线性回归的参数估计:
β^=argminβ^∑i=1n(yi−xi′β^)2 \hat{\beta}=\mathrm{arg}\min_{\hat{\beta}}\sum_{i=1}^n(y_i-x_i^{\prime}\hat{\beta})^2 β^=argβ^mini=1∑n(yi−xi′β^)2
其中,
β^=(β1^,β2^,⋯ ,βk^)′ \hat{\beta}=(\hat{\beta_1},\hat{\beta_2},\cdots,\hat{\beta_k})^{\prime} β^=(β1^,β2^,⋯,βk^)′
岭回归的参数估计:
β^=argminβ^∑i=1n(yi−xi′β^)2+λ∑i=1nβi2^=argminβ^∑i=1n(Y−X′β^)′(Y−X′β^)+λ∑i=1nβ′^β^ \hat{\beta}=\mathrm{arg}\min_{\hat{\beta}}\sum_{i=1}^n(y_i-x_i^{\prime}\hat{\beta})^2+\lambda\sum_{i=1}^n\hat{\beta_i^2}\\\qquad\qquad\qquad=\mathrm{arg}\min_{\hat{\beta}}\sum_{i=1}^n(Y-X^{\prime}\hat{\beta})^{\prime}(Y-X^{\prime}\hat{\beta})+\lambda\sum_{i=1}^n\hat{\beta^{\prime}}\hat{\beta} β^=argβ^mini=1∑n(yi−xi′β^)2+λi=1∑nβi2^=

本文探讨了岭回归和Lasso回归在解决多元线性回归中多重共线性问题的方法,包括岭回归的理论推导、岭迹分析和VIF法选择λ,以及Lasso回归的压缩特性。通过实际案例演示了如何在Matlab和Stata中实施这两种方法,以及它们在数据集中的应用效果。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



