岭回归与Lasso回归

本文探讨了岭回归和Lasso回归在解决多元线性回归中多重共线性问题的方法,包括岭回归的理论推导、岭迹分析和VIF法选择λ,以及Lasso回归的压缩特性。通过实际案例演示了如何在Matlab和Stata中实施这两种方法,以及它们在数据集中的应用效果。

岭回归与Lasso回归

为什么引入岭回归

传统的多元线性回归可能存在多重共线性,岭回归可以看作是传统多元线性回归的升级版,可以打破多重共线性的限制。

和多元线性回归相似,岭回归的参数估计也是采用OLS(极大似然估计)原理

多元线性回归的参数估计:
β^=argmin⁡β^∑i=1n(yi−xi′β^)2 \hat{\beta}=\mathrm{arg}\min_{\hat{\beta}}\sum_{i=1}^n(y_i-x_i^{\prime}\hat{\beta})^2 β^=argβ^mini=1n(yixiβ^)2
其中,
β^=(β1^,β2^,⋯ ,βk^)′ \hat{\beta}=(\hat{\beta_1},\hat{\beta_2},\cdots,\hat{\beta_k})^{\prime} β^=(β1^,β2^,,βk^)
岭回归的参数估计:
β^=argmin⁡β^∑i=1n(yi−xi′β^)2+λ∑i=1nβi2^=argmin⁡β^∑i=1n(Y−X′β^)′(Y−X′β^)+λ∑i=1nβ′^β^ \hat{\beta}=\mathrm{arg}\min_{\hat{\beta}}\sum_{i=1}^n(y_i-x_i^{\prime}\hat{\beta})^2+\lambda\sum_{i=1}^n\hat{\beta_i^2}\\\qquad\qquad\qquad=\mathrm{arg}\min_{\hat{\beta}}\sum_{i=1}^n(Y-X^{\prime}\hat{\beta})^{\prime}(Y-X^{\prime}\hat{\beta})+\lambda\sum_{i=1}^n\hat{\beta^{\prime}}\hat{\beta} β^=argβ^mini=1n(yixiβ^)2+λi=1nβi2^=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Logistic..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值