因子分析
因子分析的相关简介
与主成分分析相似,因子分析也是一种降维的方法,因子分析通过研究多维样本矩阵,在样本的多个指标下,提取出适量的因子,使得每个指标可以表示成各个因子的线性组合。
假设我们有 n n n个样本, p p p个指标,则可以构成大小为 n × p n\times p n×p的样本矩阵
x = [ x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n p ] = ( x 1 , x 2 , ⋯ , x p ) x=\begin{bmatrix} x_{11}& x_{12}& \cdots & x_{1p}\\ x_{21}& x_{22}& \cdots & x_{2p}\\ \vdots & \vdots & \ddots & \vdots \\ x_{n1}& x_{n2}& \cdots &x_{np} \end{bmatrix}=(x_1,x_2,\cdots,x_p) x=⎣
⎡x11x21⋮xn1x12x22⋮xn2⋯⋯⋱⋯x1px2p⋮xnp⎦
⎤=(x1,x2,⋯,xp)
主成分分析:通过 ( x 1 , x 2 , ⋯ , x p ) (x_1,x_2,\cdots,x_p) (x1,x2,⋯,xp)推出它们的主成分 z 1 , z 2 , ⋯ , z m ( m ≤ p ) z_1,z_2,\cdots,z_m(m\le p) z1,z2,⋯,zm(m≤p),并且存在关系
{ z 1 = l 11 x 1 + l 12 x 2 + ⋯ + l 1 p x p z 2 = l 21 x 1 + l 22 x 2 + ⋯ + l 2 p x p ⋮ z m = l m 1 x 1 + l m 2 x 2 + ⋯ + l m p x p \begin{cases} z_1=l_{11}x_1+l_{12}x_2+\cdots+l_{1p}x_p\\ z_2=l_{21}x_1+l_{22}x_2+\cdots+l_{2p}x_p\\ \qquad\vdots\\ z_m=l_{m1}x_1+l_{m2}x_2+\cdots+l_{mp}x_p\\ \end{cases} ⎩ ⎨ ⎧z1=l11x1+l12x2+⋯+l1pxpz2=l21x1+l22x2+⋯+l2pxp⋮zm=lm1x1+lm2x2+⋯+lmpxp
z 1 , z 2 , ⋯ , z m ( m ≤ p ) z_1,z_2,\cdots,z_m(m\le p) z1,z2,⋯,zm(m≤p)是 m m m个主成分,各指标的线性组合构成了主成分。
因子分析:通过 ( x 1 , x 2 , ⋯ , x p ) (x_1,x_2,\cdots,x_p) (x1,x2,⋯,xp)推出它们的”因子“ f 1 , f 2 , ⋯ , f m ( m ≤ p ) f_1,f_2,\cdots,f_m(m\le p) f1,f2,⋯,fm(m≤p),并且存在关系
{ x 1 = u 1 + a 11 f 1 + a 12 f 2 + ⋯ + a 1 m f m + ε 1 x 2 = u 2 + a 21 f 1 + a 22 f 2 + ⋯ + a 2 m f m + ε 2 ⋮ x p = u p + a p 1 f 1 + a p 2 f 2 + ⋯ + a