因子分析以及SPSS实现

因子分析和主成分分析都是统计学中的降维方法。因子分析通过寻找隐藏的公共因子来解释变量间的关系,而主成分分析侧重于找到能够最大化解释数据方差的线性组合。因子分析允许因子旋转以提高解释性,而主成分分析的解是固定的。在体育赛事数据中,因子分析揭示了耐力和爆发力两个关键因素。通过因子得分,可以将原始变量转换为因子得分,便于理解和解释。
摘要由CSDN通过智能技术生成

因子分析

因子分析的相关简介

与主成分分析相似,因子分析也是一种降维的方法,因子分析通过研究多维样本矩阵,在样本的多个指标下,提取出适量的因子,使得每个指标可以表示成各个因子的线性组合。

假设我们有 n n n个样本, p p p个指标,则可以构成大小为 n × p n\times p n×p的样本矩阵
x = [ x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n p ] = ( x 1 , x 2 , ⋯   , x p ) x=\begin{bmatrix} x_{11}& x_{12}& \cdots & x_{1p}\\ x_{21}& x_{22}& \cdots & x_{2p}\\ \vdots & \vdots & \ddots & \vdots \\ x_{n1}& x_{n2}& \cdots &x_{np} \end{bmatrix}=(x_1,x_2,\cdots,x_p) x= x11x21xn1x12x22xn2x1px2pxnp =x1,x2,,xp

主成分分析:通过 ( x 1 , x 2 , ⋯   , x p ) (x_1,x_2,\cdots,x_p) x1,x2,,xp推出它们的主成分 z 1 , z 2 , ⋯   , z m ( m ≤ p ) z_1,z_2,\cdots,z_m(m\le p) z1,z2,,zm(mp),并且存在关系
{ z 1 = l 11 x 1 + l 12 x 2 + ⋯ + l 1 p x p z 2 = l 21 x 1 + l 22 x 2 + ⋯ + l 2 p x p ⋮ z m = l m 1 x 1 + l m 2 x 2 + ⋯ + l m p x p \begin{cases} z_1=l_{11}x_1+l_{12}x_2+\cdots+l_{1p}x_p\\ z_2=l_{21}x_1+l_{22}x_2+\cdots+l_{2p}x_p\\ \qquad\vdots\\ z_m=l_{m1}x_1+l_{m2}x_2+\cdots+l_{mp}x_p\\ \end{cases} z1=l11x1+l12x2++l1pxpz2=l21x1+l22x2++l2pxpzm=lm1x1+lm2x2++lmpxp
z 1 , z 2 , ⋯   , z m ( m ≤ p ) z_1,z_2,\cdots,z_m(m\le p) z1,z2,,zm(mp) m m m个主成分,各指标的线性组合构成了主成分。

因子分析:通过 ( x 1 , x 2 , ⋯   , x p ) (x_1,x_2,\cdots,x_p) x1,x2,,xp推出它们的”因子“ f 1 , f 2 , ⋯   , f m ( m ≤ p ) f_1,f_2,\cdots,f_m(m\le p) f1,f2,,fm(mp),并且存在关系
{ x 1 = u 1 + a 11 f 1 + a 12 f 2 + ⋯ + a 1 m f m + ε 1 x 2 = u 2 + a 21 f 1 + a 22 f 2 + ⋯ + a 2 m f m + ε 2 ⋮ x p = u p + a p 1 f 1 + a p 2 f 2 + ⋯ + a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Logistic..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值