人工智能作业11

1.前馈网络存在的问题
梯度消失/梯度爆炸问题:在深度前馈网络中,当使用如sigmoid或tanh等饱和性激活函数时,网络在训练过程中可能会出现梯度消失的问题。这就导致了网络参数很难更新,进而影响网络的学习。相反,如果梯度过大,则可能会导致梯度爆炸,使得网络训练变得不稳定。

过拟合问题:前馈网络可能会过度拟合训练数据,这就使得网络在新的、未见过的数据上表现得不好。这个问题可以通过正则化技术,如权重衰减、Dropout等方法来缓解。

不能处理时序数据:前馈网络无法处理时序数据或者序列数据,因为它们没有记忆功能,无法保存先前的状态或输出。这对于理解语音、文本等顺序数据非常重要。而这一点可以通过引入RNN或LSTM等模型来解决。

2.序列数据
序列数据是一种数据类型,其中的元素存在特定的顺序。

3.循环神经网络(RNN)为什么能解决前馈网络中的问题
处理变长序列:RNN通过在序列的每个元素上一次处理一个元素来操作。这就意味着它可以处理任何长度的序列。
获取时间/空间的上下文信息:RNN的核心思想是有一个循环的隐藏状态,这个隐藏状态可以保存并更新过去的信息。因此,RNN在处理当前输入时,可以利用隐藏状态获取过去的信息。
4.卷积神经网络(CNN)与循环神经网络(RNN)的异同M
相同点:

深度学习模型:CNN和RNN都是深度学习的模型,使用了神经网络的结构,并通过反向传播和梯度下降等优化算法进行训练。
非线性映射:它们都可以学习输入和输出之间的复杂非线性映射。
参数共享:CNN和RNN都使用参数共享的策略。CNN在所有空间位置共享其核的参数,RNN在时间步骤中共享其参数。
不同点:

数据类型:CNN主要用于处理网格型数据,如图像和音频。RNN主要处理序列数据,如时间序列和文本。
结构:CNN有卷积层和池化层,主要用于局部感知和降维。RNN有循环层,可以处理序列数据,能够在时间步骤中传递信息。
空间/时间依赖性:CNN通过使用卷积核来学习局部特征,适合于处理固定长度的输入(如固定大小的图像),对空间依赖性有很好的处理能力。RNN可以处理任何长度的序列,对于长期的时间依赖性,标准的RNN处理起来有困难,但LSTM或GRU等RNN的变体可以很好地解决这个问题。
并行计算:CNN的前向和后向传播都可以高效地并行化,因为其卷积操作在所有位置都是独立的。但RNN由于其序列依赖性,在时间步骤上难以进行有效的并行化。
5.沿时间反向传播算法(BPTT)
沿时间反向传播(Backpropagation Through Time, BPTT)是一种用于训练循环神经网络(RNN)的方法。它是标准反向传播算法的一个特例,适用于具有循环(即反馈连接)的网络。

6.序列到序列模型 seq2seq
序列到序列模型是一种在深度学习中用于生成序列的模型,特别适用于那些输入和输出都是序列的问题,如机器翻译、语音识别、文本摘要等。由编码器和解码器两部分组成。

7.梯度消失、梯度爆炸
梯度消失:当网络深度增加时,网络中的梯度可能会变得非常小。这意味着在反向传播过程中,当梯度传播到靠近输入层的网络部分时,它们的值可能已经变得非常接近于零。结果是,这些层的权重几乎没有更新,使得训练过程变得非常慢或者完全停止。

梯度爆炸:与梯度消失相反,梯度爆炸是指在训练过程中,梯度变得非常大,这会导致权重更新过大,使得网络不稳定。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值