题目描述
在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达。现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望。已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿。由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小。
侦查部门还发现,敌军有一台神秘机器。即使我军切断所有能源之后,他们也可以用那台机器。机器产生的效果不仅仅会修复所有我军炸毁的桥梁,而且会重新随机资源分布(但可以保证的是,资源不会分布到1号岛屿上)。不过侦查部门还发现了这台机器只能够使用m次,所以我们只需要把每次任务完成即可。
输入格式
第一行一个整数n,代表岛屿数量。
接下来n-1行,每行三个整数u,v,w,代表u号岛屿和v号岛屿由一条代价为c的桥梁直接相连,保证1<=u,v<=n且1<=c<=100000。
第n+1行,一个整数m,代表敌方机器能使用的次数。
接下来m行,每行一个整数ki,代表第i次后,有ki个岛屿资源丰富,接下来k个整数h1,h2,…hk,表示资源丰富岛屿的编号。
输出格式
输出有m行,分别代表每次任务的最小代价。
输入输出样例
输入
10 1 5 13 1 9 6 2 1 19 2 4 8 2 3 91 5 6 8 7 5 4 7 8 31 10 7 9 3 2 10 6 4 5 7 8 3 3 9 4 6
输出
12 32 22
【数据规模和约定】
对于10%的数据,2<=n<=10,1<=m<=5,1<=ki<=n-1
对于20%的数据,2<=n<=100,1<=m<=100,1<=ki<=min(10,n-1)
对于40%的数据,2<=n<=1000,m>=1,sigma(ki)<=500000,1<=ki<=min(15,n-1)
对于100%的数据,2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1
题解
虚树DP
我们先来考虑正常的DP,设f[i]表示点i子树与1号点断绝关系的最小代价
当i为资源点时:(a[i]表示1~i路径上的最小边权)
否则:
然而每次DP都要O(n),所以考虑优化
我们发现每次与DP值有关的 只有资源点与它们之间的LCA,所以我们把这些点单独拿出来DP
虚树是指在原树上选择若干点组成的树,它在原树的基础上做了一些简化,但是保留必要的信息,从而 使得计算更加高效。虚树主要用于树DP中,能够减少顶点数,降低时间复杂度。虚树实际就是为了解 决一类树形动态规划问题而诞生的。
怎么建造虚树呢?
我们可以把所有的输入点按先序遍历排序,按照它们的深度建一个递增的单调队列(相当于保证这个队列时一个链)
每次把待插入点和栈顶点求一个LCA,然后把栈顶与LCA的深度比较大小,弹出栈顶来维护单调性
然后就是各种细节需要处理(判等、清零……),一定要思路清晰
建好了虚树,在虚树上面跑暴力DP即可
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gi()
{
char c;int num=0,flg=1;
while((c=getchar())<'0'||c>'9')if(c=='-')flg=-1;
while(c>='0'&&c<='9'){num=num*10+c-48;c=getchar();}
return num*flg;
}
#define N 500005
#define LOG 18
#define LL long long
int fir[N],to[2*N],nxt[2*N],cd[2*N],cnt;
int f[N][LOG+2],dep[N],dfn[N],dc;
int b[N],bct,stk[N],top;
LL dp[N],a[N];bool vis[N];
const LL INF=0x3f3f3f3f3f3f3f3fll;
void adde(int a,int b,int c)
{
to[++cnt]=b;nxt[cnt]=fir[a];fir[a]=cnt;cd[cnt]=c;
}
void dfs(int u,LL val)
{
dfn[u]=++dc;a[u]=val;
dep[u]=dep[f[u][0]]+1;
for(int v,p=fir[u];p;p=nxt[p]){
if((v=to[p])!=f[u][0]){
f[v][0]=u;
dfs(v,min(val,1ll*cd[p]));
}
}
}
int getk(int x,int k)
{
for(int i=LOG;i>=0;i--)
if(k&(1<<i))x=f[x][i];
return x;
}
int getd(int x,int d)
{
return getk(x,dep[x]-d);
}
int LCA(int x,int y)
{
if(dep[x]>dep[y])
x=getd(x,dep[y]);
else if(dep[x]<dep[y])
y=getd(y,dep[x]);
if(x==y) return x;
for(int i=LOG;i>=0;i--)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][0];
}
bool cmp(int x,int y){return dfn[x]<dfn[y];}
void DP(int u)
{
LL sum=0;
for(int v,p=fir[u];p;p=nxt[p]){
v=to[p];
DP(v);
sum+=dp[v];
}
if(!vis[u])dp[u]=min(1ll*a[u],sum);
else dp[u]=a[u];
}
int main()
{
int n,m,i,j,u,v,w,k;
n=gi();
for(i=1;i<n;i++){
u=gi();v=gi();w=gi();
adde(u,v,w);adde(v,u,w);
}
dfs(1,INF);
for(j=1;j<=LOG;j++)
for(i=1;i<=n;i++)
f[i][j]=f[f[i][j-1]][j-1];
memset(fir,0,sizeof(fir));cnt=0;
memset(dp,0x3f,sizeof(dp));
m=gi();
while(m--){
k=gi();
for(i=1;i<=k;i++)scanf("%d",&b[i]),vis[b[i]]=1;
b[++k]=1;bct=k;
sort(b+1,b+k+1,cmp);top=0;
stk[++top]=b[1];
for(i=2;i<=k;i++){
int lca=LCA(b[i],stk[top]);
if(lca==stk[top]){stk[++top]=b[i];continue;}
while(top>1&&dep[stk[top-1]]>=dep[lca]){
adde(stk[top-1],stk[top],0);
top--;
}
if(lca!=stk[top])adde(lca,stk[top],0),stk[top]=lca,b[++bct]=lca;
stk[++top]=b[i];
}
while(top>1)adde(stk[top-1],stk[top],0),top--;
DP(1);printf("%lld\n",dp[1]);
cnt=0;
for(i=1;i<=bct;i++){
vis[b[i]]=0;fir[b[i]]=0;
dp[b[i]]=INF;
}
}
}