BZOJ4559: [JLoi2016]成绩比较【DP+插值】

题目描述:

G系共有n位同学,M门必修课。这N位同学的编号为0到N-1的整数,其中B神的编号为0号。这M门必修课编号为0到M-1的整数。一位同学在必修课上可以获得的分数是1到Ui中的一个整数。

如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压。在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压。D神查到了B神每门必修课的排名。

这里的排名是指:如果B神某门课的排名为R,则表示有且仅有R-1位同学这门课的分数大于B神的分数,有且仅有N-R位同学这门课的分数小于等于B神(不包括他自己)。

我们需要求出全系所有同学每门必修课得分的情况数,使其既能满足B神的说法,也能符合D神查到的排名。这里两种情况不同当且仅当有任意一位同学在任意一门课上获得的分数不同。

你不需要像D神那么厉害,你只需要计算出情况数模10^9+7的余数就可以了。
N , M ≤ 100 , U i ≤ 1 0 9 N,M\le100,U_i\le10^9 N,M100,Ui109

题目分析:

由于B神的排名是已知的,所以枚举B神的得分,可以求出第 i i i门课的分数分布 d [ i ] = ∑ t = 1 U [ i ] t n − R [ i ] ( U [ i ] − t ) R [ i ] − 1 d[i]=\sum_{t=1}^{U[i]}t^{n-R[i]}(U[i]-t)^{R[i]-1} d[i]=t=1U[i]tnR[i](U[i]t)R[i]1

f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i门课中有 j j j个人被B神碾压(前 i i i门课都小于等于B神)的得分情况数,有转移 f [ i ] [ j ] = d [ i ] ∗ ∑ k = j n C k k − j C n − k − 1 R [ i ] − 1 − ( k − j ) f [ i − 1 ] [ k ] f[i][j]=d[i]*\sum_{k=j}^nC_k^{k-j}C_{n-k-1}^{R[i]-1-(k-j)}f[i-1][k] f[i][j]=d[i]k=jnCkkjCnk1R[i]1(kj)f[i1][k]
意味着前面 k k k个被碾压的人中有 k − j k-j kj个人在第 i i i门课中高于了B,另外的 n − k − 1 n-k-1 nk1个人中选出 R [ i ] − 1 − ( k − j ) R[i]-1-(k-j) R[i]1(kj)个高于B。

d [ i ] d[i] d[i]展开,可以发现应当是一个关于 U [ i ] U[i] U[i] n n n次多项式,可以用插值解决。

但是插值的时候不必用 O ( n 2 ) O(n^2) O(n2)的时间分开求0到 n n n的点值,可以把 ( U [ i ] − t ) R [ i ] − 1 (U[i]-t)^{R[i]-1} (U[i]t)R[i]1中的 U [ i ] U[i] U[i]看做一个常数 U U U,可以发现此时多项式在 U [ i ] U[i] U[i]处的点值与原多项式在 U [ i ] U[i] U[i]处的点值是相等的,所以我们的0~n的点值可以做到 O ( n ) O(n) O(n),求一次的复杂度就是 O ( n l o g ) O(nlog) O(nlog)的(当然 O ( n 2 ) O(n^2) O(n2)也没问题)。

也可以不用插值,将 d [ i ] d[i] d[i]二项式展开,可以得到自然数幂和的形式,网上有相关解法,这里就不展开了。

总复杂度为 O ( m n 2 + n 2 l o g ) O(mn^2+n^2log) O(mn2+n2log)

Code:

#include<cstdio>
#define maxn 105
const int mod = 1e9+7;
int n,m,K,c[maxn][maxn],U[maxn],R[maxn],f[maxn][maxn];
inline int Pow(int a,int b){
	int s=1;
	for(;b;b>>=1,a=1ll*a*a%mod) b&1&&(s=1ll*s*a%mod);
	return s;
}
void Pre(const int N){
	for(int i=(c[0][0]=1);i<=N;i++)
		for(int j=(c[i][0]=1);j<=i;j++)
			c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
int Y[maxn];
int calc(int N,int rk){
	int ret=0;
	if(N<=n){//下面的\prod_(x-xi)要预处理,每次除(x-xi),可能为0,特判
		for(int i=1;i<=N;i++) ret=(ret+1ll*Pow(i,n-rk)*Pow(N-i,rk-1))%mod;
		return ret;
	}
	int X=1,D=1,Y=0;
	for(int i=0;i<=n;i++) X=1ll*X*(N-i)%mod;
	for(int i=1;i<=n;i++) D=1ll*D*(0-i)%mod;
	for(int i=0;i<=n;i++){
		/*Y=0;//n^2计算点值
		for(int j=1;j<=i;j++) Y=(Y+1ll*Pow(j,n-rk)*Pow(i-j,rk-1))%mod;
		*/
		if(i) Y=(Y+1ll*Pow(i,n-rk)*Pow(N-i,rk-1))%mod;
		ret=(ret+1ll*Y*X%mod*Pow(N-i,mod-2)%mod*Pow(D,mod-2))%mod;
		D=1ll*D*(i+1)%mod*Pow(i-n,mod-2)%mod;
	}
	return ret;
}
int main()
{
	scanf("%d%d%d",&n,&m,&K),Pre(n);
	for(int i=1;i<=m;i++) scanf("%d",&U[i]);
	for(int i=1;i<=m;i++) scanf("%d",&R[i]);
	f[0][n-1]=R[0]=1;
	for(int i=1;i<=m;i++)
		for(int j=0;j<=n-R[i];j++)
			for(int k=j;k<=n-R[i-1]&&k-j<R[i];k++)
				f[i][j]=(f[i][j]+1ll*c[k][j]*c[n-k-1][R[i]-1-(k-j)]%mod*f[i-1][k])%mod;
	int ans=f[m][K];
	for(int i=1;i<=m;i++) ans=1ll*ans*calc(U[i],R[i])%mod;
	printf("%d",(ans+mod)%mod);
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值