bzoj 4559: [JLoi2016]成绩比较 容斥原理+拉格朗日插值法

题意

G系共有n位同学,M门必修课。这N位同学的编号为0到N-1的整数,其中B神的编号为0号。这M门必修课编号为0到M-1的整数。一位同学在必修课上可以获得的分数是1到Ui中的一个整数。如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压。在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压。D神查到了B神每门必修课的排名。这里的排名是指:如果B神某门课的排名为R,则表示有且仅有R-1位同学这门课的分数大于B神的分数,有且仅有N-R位同学这门课的分数小于等于B神(不包括他自己)。我们需要求出全系所有同学每门必修课得分的情况数,使其既能满足B神的说法,也能符合D神查到的排名。这里两种情况不同当且仅当有任意一位同学在任意一门课上获得的分数不同。你不需要像D神那么厉害,你只需要计算出情况数模10^9+7的余数就可以了。
N<=100,M<=100,Ui<=10^9

分析

直接求的话不好求,考虑容斥,用至少有K个人被碾压的方案-至少有K+1个人被碾压的方案+至少有K+2个人被碾压的方案+….
考虑如何求至少有s个人被碾压的方案,不难发现答案就是

Csn1CKsi=1mCRi1ns1j=1Ui(Uij)Ri1jnRi C n − 1 s C s K ∏ i = 1 m C n − s − 1 R i − 1 ∑ j = 1 U i ( U i − j ) R i − 1 j n − R i

对于后面那部分
j=1Ui(Uij)Ri1jnRi ∑ j = 1 U i ( U i − j ) R i − 1 j n − R i

由于它的次数是n-1,求和之后就变成了一个n次的多项式,于是我们可以暴力插值把这东西求出来,然后就做完了。
时间复杂度 O(n3) O ( n 3 )

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=105;
const int MOD=1000000007;

int n,m,k,jc[N],ny[N],po1[N],po2[N],f[N],u[N],r[N],g[N];

int ksm(int x,int y)
{
    int ans=1;
    while (y)
    {
        if (y&1) ans=(LL)ans*x%MOD;
        x=(LL)x*x%MOD;y>>=1;
    }
    return ans;
}

int C(int n,int m)
{
    if (n<m) return 0;
    return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}

int calc(int u,int r)
{
    for (int i=0;i<=n+1;i++) po1[i]=ksm(i,r-1),po2[i]=ksm(i,n-r);
    for (int i=1;i<=n+1;i++)
    {
        f[i]=0;
        for (int j=1;j<=i;j++)
            (f[i]+=(LL)po1[i-j]*po2[j]%MOD)%=MOD;
    }
    int ans=0;
    for (int i=1;i<=n+1;i++)
    {
        int s1=f[i],s2=1;
        for (int j=1;j<=n+1;j++)
            if (i!=j) s1=(LL)s1*(u-j)%MOD,s2=(LL)s2*(i-j)%MOD;
        (ans+=(LL)s1*ksm(s2,MOD-2)%MOD)%=MOD;
    }
    return ans;
}

int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for (int i=1;i<=m;i++) scanf("%d",&u[i]);
    for (int i=1;i<=m;i++) scanf("%d",&r[i]);
    jc[0]=jc[1]=ny[0]=ny[1]=1;
    for (int i=2;i<=n;i++) jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=(LL)(MOD-MOD/i)*ny[MOD%i]%MOD;
    for (int i=2;i<=n;i++) ny[i]=(LL)ny[i]*ny[i-1]%MOD;
    for (int i=1;i<=m;i++) g[i]=calc(u[i],r[i]);
    int ans=0;
    for (int i=k;i<n;i++)
    {
        int w=(LL)C(n-1,i)*C(i,k)%MOD;
        for (int j=1;j<=m;j++) w=(LL)w*C(n-i-1,r[j]-1)%MOD*g[j]%MOD;
        if ((i-k)&1) (ans-=w)%=MOD;
        else (ans+=w)%=MOD;
    }
    printf("%d",(ans+MOD)%MOD);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值