BZOJ3331 压力【必经点,圆方树】

题目描述

一个连通无向图,有Q个从 s i s_i si走到 t i t_i ti的运输,问1~n每个点作为必经点的次数。
N≤100000,M,Q≤200000

题目分析:

必经点就是割点和起点终点,缩点双(新建一个点,点双的所有点都连在这个点上),重新建图构成一棵树,然后树上差分。

其实就是圆方树模板题。

但是我第一次打点双震惊了,退栈的终止条件不能再像边双那样用stk[top]!=u来判断,而应该用stk[top]!=v,在点双里面u,v在栈中是不一定连续的。就这个调了我1.5h。。。

Code:

#include<bits/stdc++.h>
#define maxn 200005
#define maxm 400005
using namespace std;
int n,m,Q,dfn[maxn],low[maxn],stk[maxn],top,tim,sz;
int ans[maxn],f[maxn],fa[maxn]; bool vis[maxn];
int fir[maxn],nxt[maxm],to[maxm],tot;
vector<int>G[maxn],Pf[maxn];
inline void line(int x,int y){nxt[++tot]=fir[x],fir[x]=tot,to[tot]=y;}
void tarjan(int u){
	dfn[u]=low[u]=++tim,stk[++top]=u;
	for(int i=fir[u],v;i;i=nxt[i]){
		if(!dfn[v=to[i]]){
			tarjan(v),low[u]=min(low[u],low[v]);
			if(low[v]>=dfn[u]){
				G[++sz].push_back(u),G[u].push_back(sz);
				do G[sz].push_back(stk[top]),G[stk[top]].push_back(sz); while(stk[top--]!=v);
			}
		}
		else low[u]=min(low[u],dfn[v]);
	}
}
int find(int x){return !f[x]?x:f[x]=find(f[x]);}
void dfs(int u,int ff){
	fa[u]=ff,vis[u]=1;
	for(int v: Pf[u]) if(vis[v]) ans[find(v)]--,ans[fa[find(v)]]--;
	for(int v: G[u]) if(v!=ff) dfs(v,u),ans[u]+=ans[v];
	f[u]=ff;
}
int main()
{
	int x,y;
	scanf("%d%d%d",&n,&m,&Q),sz=n;
	while(m--) scanf("%d%d",&x,&y),line(x,y),line(y,x);
	tarjan(1);
	while(Q--) scanf("%d%d",&x,&y),ans[x]++,ans[y]++,Pf[x].push_back(y),Pf[y].push_back(x);
	dfs(1,0);
	for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
}
题目描述 有一个 $n$ 个的棋盘,每个上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个的父节是它的前驱或者后继,然后我们从根节开始,依次向下遍历,对于每个节,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有的权值和的最小值,然后再将这个值加上当前节的权值,就可以得到从根节到当前节的路径中,所有的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值