20200525 hz T3(#6496. 「雅礼集训 2018 Day1」仙人掌)【仙人掌DP + 分治NTT】

题目描述:

在这里插入图片描述
给出一个仙人掌,为每条边定向, i i i号点的出度不超过 a i a_i ai,求方案数。
n ≤ 1 0 5 , m o d    998244353 n\le10^5,\mod 998244353 n105,mod998244353

题目分析:

先考虑树的情况怎么做:
f [ i ] [ 0 / 1 ] f[i][0/1] f[i][0/1]表示 i i i 没有/有一条出边连向父亲时子树的方案数。
那么儿子的 f [ j ] [ 0 ] f[j][0] f[j][0]会占用 i i i 一条出边,看做多项式, f [ i ] [ 0 ] f[i][0] f[i][0]就是 ∏ ( f [ j ] [ 1 ] + f [ j ] [ 0 ] x ) \prod(f[j][1]+f[j][0]x) (f[j][1]+f[j][0]x) x a i x^{a_i} xai项以前的系数, f [ i ] [ 1 ] f[i][1] f[i][1]就是 x a i − 1 x^{a_i-1} xai1项以前的系数。分治NTT优化就是 O ( n log ⁡ 2 n ) O(n\log^2 n) O(nlog2n)

然后迁移到仙人掌上:
直接DP很麻烦,需要对把环单独提出来再DP,我们建出仙人掌对应的圆方树(相邻无重边的两点不看做一个点双,圆点直接相连)
分情况考虑,设 f [ u ] [ 0 / 1 / 2 ] f[u][0/1/2] f[u][0/1/2]表示 u u u向上连了 0 / 1 / 2 0/1/2 0/1/2条边时子树的方案数:

  • 当前点 u u u是圆点,那么直接按照树的情况做,如果儿子是圆点,多项式为 f [ v ] [ 1 ] + f [ v ] [ 0 ] x f[v][1]+f[v][0]x f[v][1]+f[v][0]x;如果儿子是方点,多项式为 f [ v ] [ 2 ] + f [ v ] [ 1 ] x + f [ v ] [ 0 ] x 2 f[v][2]+f[v][1]x+f[v][0]x^2 f[v][2]+f[v][1]x+f[v][0]x2
  • 当前点 u u u是方点,需要考虑它父亲在环上的连边方向以及环内部的连边方向。此时方点的 f [ u ] [ 0 / 1 / 2 ] f[u][0/1/2] f[u][0/1/2]的含义就是这个环向顶部连了 0 / 1 / 2 0/1/2 0/1/2条边的方案数。
    枚举顶部向环连的第一条边的方向,然后DP,设 g 0 , g 1 g_0,g_1 g0,g1分别表示环上当前点被上一个点指向/指向上一个点时前面的方案数,设 t 0 , t 1 t_0,t_1 t0,t1表示环上下一个点被当前点指向/指向当前点的方案数,那么有: t 0 = g 0 ∗ f v , 1 + g 1 ∗ f v , 2 t 1 = g 0 ∗ f v , 0 + g 1 ∗ f v , 1 t_0=g_0*f_{v,1}+g_1*f_{v,2}\\t_1=g_0*f_{v,0}+g_1*f_{v,1} t0=g0fv,1+g1fv,2t1=g0fv,0+g1fv,1
    将所有点DP完之后的 g 0 , g 1 g_0,g_1 g0,g1就表示最后一条边指向/不指向环顶部的方案数。根据枚举的第一条边的方向可推得 g 0 , g 1 g_0,g_1 g0,g1 f [ u ] f[u] f[u]的贡献。

最后的答案就是 f [ 1 ] [ 0 ] f[1][0] f[1][0],把仙人掌DP问题放到圆方树上之后就只需要再考虑方点与圆点之间的转移,问题就简化了许多。

Code:

#include<bits/stdc++.h>
#define maxn 300005
#define maxm 400005
#define pb(x) push_back(x)
using namespace std;
const int mod = 998244353;
int n,m,a[maxn],deg[maxn],dfn[maxn],low[maxn],tim,stk[maxn],top,sz,f[maxn][3];
int fir[maxn],nxt[maxm],to[maxm],tot=1;
inline void line(int x,int y){nxt[++tot]=fir[x],fir[x]=tot,to[tot]=y;}
vector<int>E[maxn];
void tarjan(int u,int ff){
	dfn[u]=low[u]=++tim,stk[++top]=u;
	for(int i=fir[u],v;i;i=nxt[i]) if(i^1^ff){
		if(!dfn[v=to[i]]){
			tarjan(v,i),low[u]=min(low[u],low[v]);
			if(dfn[u]==low[v]){
				E[u].pb(++sz);
				do E[sz].pb(stk[top]); while(stk[top--]!=v);
			}
			else if(dfn[u]<low[v]) E[u].pb(stk[top--]);
		}
		else low[u]=min(low[u],dfn[v]);
	}
}
int Pow(int a,int b){int s=1;for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) s=1ll*s*a%mod; return s;}
int w[maxn],r[maxn],lg[maxn],wlen;
void init(int n){
	wlen=w[0]=1; while(wlen<=n) wlen<<=1; lg[0]=-1,w[1]=Pow(3,(mod-1)/wlen);
	for(int i=2;i<=wlen;i++) w[i]=1ll*w[i-1]*w[1]%mod,lg[i]=lg[i>>1]+1;
}
int upd(int x){return x>=mod?x-mod:x;}
void NTT(int *a,int len,int flg){
	for(int i=0;i<len;i++) if(i<r[i]) swap(a[i],a[r[i]]);
	for(int i=2,l=1,v;i<=len;l=i,i<<=1)
		for(int j=0,t=wlen/i;j<len;j+=i)
			for(int k=j,o=0;k<j+l;k++,o+=t)
				v=1ll*w[flg^1?wlen-o:o]*a[k+l]%mod, a[k+l]=upd(a[k]-v+mod), a[k]=upd(a[k]+v);
	if(flg^1) for(int i=0,Inv=Pow(len,mod-2);i<len;i++) a[i]=1ll*a[i]*Inv%mod;
}
typedef vector<int> Poly;
Poly Mul(const Poly &A,const Poly &B){
	static int a[maxn],b[maxn]; int n=A.size(),m=B.size(),len=1<<(lg[n+m-2]+1);
	for(int i=0;i<len;i++) a[i]=i<n?A[i]:0, b[i]=i<m?B[i]:0, r[i]=r[i>>1]>>1|(i&1?len>>1:0);
	NTT(a,len,1),NTT(b,len,1);
	for(int i=0;i<len;i++) a[i]=1ll*a[i]*b[i]%mod;
	NTT(a,len,-1);
	return Poly(a,a+n+m-1);
}
Poly tmp[maxn];
Poly solve(int l,int r){
	if(l==r) return tmp[l];
	int mid=(l+r)>>1;
	return Mul(solve(l,mid),solve(mid+1,r));
}
void dfs(int u){
	for(int v:E[u]) dfs(v);
	if(u<=n){
		if(!E[u].size()) {f[u][0]=1,f[u][1]=(a[u]>=1),f[u][2]=(a[u]>=2);return;}
		int son=0;
		for(int v:E[u]){
			tmp[++son].clear();
			if(v>n) tmp[son].pb(f[v][2]);
			tmp[son].pb(f[v][1]),tmp[son].pb(f[v][0]);
		}
		Poly F(solve(1,son)); F.resize(a[u]+1);
		for(int i=1;i<=a[u];i++) F[i]=upd(F[i]+F[i-1]);
		for(int i=0;i<=min(a[u],2);i++) f[u][i]=F[a[u]-i];
	}
	else{
		for(int i=0;i<2;i++){//determine the edge connected to the top.
			int g0=!i,g1=i,t0,t1;//g0: now be pointed, g1: point at pre.
			for(int v:E[u]){
				t0=(1ll*g0*f[v][1]+1ll*g1*f[v][2])%mod;
				t1=(1ll*g0*f[v][0]+1ll*g1*f[v][1])%mod;
				g0=t0,g1=t1;
			}
			f[u][i]=upd(f[u][i]+g1);//point at top i edges.
			f[u][i+1]=upd(f[u][i+1]+g0);
		}
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1,x,y;i<=m;i++) scanf("%d%d",&x,&y),line(x,y),line(y,x),deg[x]++,deg[y]++;
	for(int i=1;i<=n;i++) scanf("%d",&a[i]),a[i]=min(a[i],deg[i]);
	init(2*n-2),sz=n,tarjan(1,0);
	dfs(1);
	printf("%d\n",f[1][0]);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值