Aizu2560 Point Distance 【FFT】

题目描述:

有一个N×N的方阵,第x行第y列有 C x , y C_{x,y} Cx,y个点( 0 ≤ C x , y ≤ 9 0\le C_{x,y}\le9 0Cx,y9)。
任选两个不同的点,求两点欧几里德距离的均值(或期望)。
然后按距离从小到大输出该距离的平方di和对应的点对数目ci。

题目分析:

想办法把两点之间的距离用横纵坐标的线性组合表示成一个值,使得可以把两点值相减之后的值还原出对应的横纵坐标之差(类似于一个加密解密的过程),然后就可以FFT卷积了
容易想到使用每个点的编号作为加密规则,假设有两个点 ( i , j ) , ( x , y )   ( i , j , x , y ∈ [ 0 , n − 1 ] ) (i,j),(x,y)~(i,j,x,y\in[0,n-1]) (i,j),(x,y) (i,j,x,y[0,n1]),那么他们的差值为:
( i ∗ n + j ) − ( x ∗ n + y ) = ( i − x ) ∗ n + ( j − y ) (i*n+j)-(x*n+y)=(i-x)*n+(j-y) (in+j)(xn+y)=(ix)n+(jy)
这时候你会想,这个值模一下n不就得到纵坐标之差了吗?!
实际上是有问题的,因为此时的 ( i − x ) , ( j − y ) (i-x),(j-y) (ix),(jy)不一定都是正数
举个例子,当n=3时,i-x=1, j-y=1, 和 i-x=2, j-y=-2 对应的是同一个值,无法判断
也就是说,i-x的变化被j-y的变化干扰了。
那么就不要让它干扰! 把 i*n+j 改作 i*2n+j
此时再看: ( i ∗ 2 n + j ) − ( x ∗ 2 n + y ) = ( i − x ) ∗ 2 n + ( j − y ) (i*2n+j)-(x*2n+y)=(i-x)*2n+(j-y) (i2n+j)(x2n+y)=(ix)2n+(jy)
再模上2n,j-y是正是负一目了然,记模出来的值为x,若 x ∈ ( − 2 n , − n ] ∪ ( 0 , n − 1 ] x\in(-2n,-n]\cup(0,n-1] x(2n,n](0,n1]则为j-y正,反之则为负
然后把对应的编号转成次幂形式,多项式A为 x i d x^{id} xid,多项式B为 x − i d x^{-id} xid,做FFT,由幂(编号之差)反推横纵坐标之差,乘上对应系数即可
ps:上述过程有点像哈希似的呢。。。有解密的味道。。。

  • 记得用long long! 点的数量是百万级别,不是1024…
  • 0要单独处理
#include<cstdio>
#include<cmath>
#define LL long long
#include<algorithm>
using namespace std;
const int maxn = 1<<23;
const double Pi = acos(-1);
struct complex
{
	double r,i;
	complex(double _r=0,double _i=0):r(_r),i(_i){}
	complex operator + (const complex &t)const{return complex(r+t.r,i+t.i);}
	complex operator - (const complex &t)const{return complex(r-t.r,i-t.i);}
	complex operator * (const complex &t)const{return complex(r*t.r-i*t.i,r*t.i+i*t.r);}
}a1[maxn],a2[maxn],wn,w;
void change(complex *a,int len)
{
	for(int i=1,j=len/2,k;i<len-1;i++)
	{
		if(i<j) swap(a[i],a[j]);
		for(k=len/2;j>=k;j-=k,k>>=1);
		j+=k;
	}
}
void fft(complex *a,int len,int flg)
{
	change(a,len);
	for(int i=2;i<=len;i<<=1)
	{
		wn=complex(cos(2*Pi*flg/i),sin(2*Pi*flg/i));
		for(int j=0;j<len;j+=i)
		{
			w=complex(1,0);
			for(int k=j;k<j+i/2;k++)
			{
				complex u=a[k],v=w*a[k+i/2];
				a[k]=u+v,a[k+i/2]=u-v;
				w=w*wn;
			}
		}
	}
	if(flg==-1) for(int i=0;i<len;i++) a[i].r/=len;
}
int n,reset,x,sum;
LL cnt[2100000];
double ans;
int main()
{
	freopen("1.in","r",stdin);
	freopen("1.out","w",stdout);
	scanf("%d",&n);reset=(2*n+1)*(n-1);
	int len=1;while(len<2*reset+1) len<<=1;
	for(int i=0;i<n;i++)
		for(int j=0;j<n;j++)
		{
			scanf("%d",&x);sum+=x;
			a1[i*2*n+j].r=x;
			a2[reset-i*2*n-j].r=x;
			cnt[0]+=x*(x-1)/2;
		}
	fft(a1,len,1),fft(a2,len,1);
	for(int i=0;i<len;i++) a2[i]=a1[i]*a2[i];
	fft(a2,len,-1);
	for(int i=0,x,y;i<len;i++)
	{
		LL t=(LL)(a2[i].r+0.5);
		if(!t) continue;
		y=(i-reset)%(2*n);
		if(y<=-n) y+=2*n;
		if(y>=n) y-=2*n;
		x=(i-reset-y)/(2*n);
		x=x*x+y*y;
		if(x) cnt[x]+=t;
		ans+=t*sqrt(x);
	}
	printf("%.10lf\n",ans/(1ll*sum*(sum-1)));
	int num=0,top=(n-1)*(n-1)*2;
	if(cnt[0]) printf("0 %lld\n",cnt[0]),num++;
	for(int i=1;i<=top&&num<10000;i++)
		if(cnt[i]) printf("%d %lld\n",i,cnt[i]/2),num++;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值