BZOJ 3279 小Z的麻烦 & 2734 集合选数

3279
2734
题面就不说了。
第一个题,我们把一个数和它关联的数列成一个矩阵:
1, 2, 4, … , 2m-1
2m, 2m+1,…, 22m-1

3, 6, 12, … ,3*2m-1
3 *2m, …
容易想到,可以放在第一个盒子里的数都是像这样的:
a ∗ 2 m x , x ≥ 0 a*2^{mx},x\ge 0 a2mx,x0, a a a为奇数 , a ∗ 2 m x + m − 1 ≤ n a*2^{mx+m-1}\le n a2mx+m1n
先把n除一个2m-1,统计n里面有多少个奇数,再除去2m,再统计有多少个奇数,一直将n除尽为止,需要高精度计算

集合选数问题,同样的,我们把一个数和它关联的数列成一个矩阵:
1,3,9,27…
2,6,18,54…
4,12,36,108…
那么题目的限制条件就是不能取矩阵中相邻的两个数,每行最多11个数,状压DP即可
同样的,还会有5,7,11等数作为开头形成另外的矩阵,答案就是把每个矩阵的方案乘起来

规律已然很明显。。。
附上代码:

//bzoj 3279
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const LL bit = 1e15;
const int w = 15;
int T,m;
struct node{
	LL s[1005];
	int len;
	node(){memset(s,0,sizeof s);len=0;}
	void read(){
		static char c[10005];
		scanf("%s",c+1);
		int n=strlen(c+1);len=(n-1)/w+1;
		for(int i=1;i<=len;i++)
			for(int j=max(1,n-i*w+1);j<=n-(i-1)*w;j++)
				s[i]=s[i]*10+c[j]-'0';
	}
	void write(){
		printf("%lld",s[len]);
		for(int i=len-1;i>=1;i--) printf("%015lld",s[i]);
		putchar('\n');
	}
	node operator / (const int &p)const{
		node c;c.len=len;
		LL x=0,k=bit>>p,r=bit&((1<<p)-1);
		for(int i=len;i>=1;i--)
		{
			c.s[i]=x*k+((s[i]+x*r)>>p);
			x=(s[i]+x*r)&((1<<p)-1);
		}
		while(c.len&&!c.s[c.len]) c.len--;
		return c;
	}
	node operator + (const node &B)const{
		node c;c.len=max(len,B.len);
		for(int i=1;i<=c.len;i++)
		{
			c.s[i]+=s[i]+B.s[i];
			if(c.s[i]>=bit) c.s[i+1]++,c.s[i]-=bit; 
		}
		if(c.s[c.len+1]) c.len++;
		return c;
	}
	node operator + (const int &b)const{
		node c=*this;
		c.s[1]+=b;
		int i=1;while(c.s[i]>=bit) c.s[i]-=bit,c.s[i+1]++,i++;
		if(c.s[c.len+1]) c.len++;
		return c;
	}
}n,ans;
int main()
{
	scanf("%d",&T);
	while(T--){
		n=node(),ans=node();
		n.read();scanf("%d",&m);
		if(m==1) {n.write();continue;}
		n=n/(m-1);
		for(;n.len;n=n/m) ans=ans+((n+1)/1);
		ans.write();
	}
}
//bzoj 2734
#include<cstdio>
const int mod = 1e9+1;
int N,ans=1,a[20][15],b[20],f[2][1<<13];
bool vis[100005];
int calc(int x)
{
	vis[a[0][0]=x]=1;
	int i,n;
	for(i=0;;i++){
		if(i) a[i][0]=a[i-1][0]*2;
		if(a[i][0]>N) break;
		vis[a[i][0]]=1;
		for(b[i]=1;;b[i]++)
			if((a[i][b[i]]=a[i][b[i]-1]*3)>N) break;
			else vis[a[i][b[i]]]=1;
	}
	n=i,b[n]=0;
	int now=0;
	for(int i=0;i<(1<<b[0]);i++) f[now][i]=(i^(2*i))==3*i;
	for(int i=0;i<n;i++){
		for(int t=0;t<(1<<b[i+1]);t++) f[!now][t]=0;
		for(int s=0;s<(1<<b[i]);s++) if(f[now][s])
			for(int t=0;t<(1<<b[i+1]);t++)
				if((t^(2*t))==3*t&&(s&t)==0) f[!now][t]=(f[!now][t]+f[now][s])%mod;
		now=!now;
	}
	return f[now][0];
}
int main()
{
	scanf("%d",&N);
	for(int i=1;i<=N;i++)
		if(!vis[i]) ans=1ll*ans*calc(i)%mod;
	printf("%d",ans);
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一道经典的组合数学题目,需要一些基本的组合数学知识。 首先,我们先来了解一下伯努利数。伯努利数是组合数学中的一类数列,它们的递推式如下: $$B_0 = 1, B_n = -\frac{1}{n+1}\sum_{i=0}^{n-1}{{n+1}\choose{i}}B_i$$ 其中 $n\geq 1$,${n\choose k}$ 表示组合数,$B_n$ 表示第 $n$ 个伯努利数。 接下来,我们考虑如何计算 $\sum_{i=0}^{n}{n+1\choose{i}}B_i$。根据二项式定理,我们有: $$(1+x)^{n+1} = \sum_{i=0}^{n+1}{n+1\choose{i}}x^i$$ 对上式两边求导可以得到: $$(n+1)(1+x)^n = \sum_{i=1}^{n+1}{n+1\choose{i}}ix^{i-1}$$ 将 $x=1$ 带入上式,得到: $$(n+1)\cdot 2^n = \sum_{i=1}^{n+1}{n+1\choose{i}}i$$ 注意到 $B_0=1$,我们可以对伯努利数的递推式进行变形: \begin{aligned} B_n &amp;= -\frac{1}{n+1}\sum_{i=0}^{n-1}{{n+1}\choose{i}}B_i \\ &amp;= -\frac{1}{n+1}\left({{n+1}\choose{0}}B_0 + \sum_{i=1}^{n}{{n+1}\choose{i}}B_i\right) \\ &amp;= -\frac{1}{n+1}\left({{n+1}\choose{0}}B_0 + \sum_{i=1}^{n}{n+1\choose{i}}B_i\right) + \frac{1}{n+1}{{n+1}\choose{0}}B_0 \\ &amp;= -\frac{1}{n+1}\sum_{i=0}^{n}{n+1\choose{i}}B_i + \frac{1}{n+1} \end{aligned} 因此,我们有: $$\sum_{i=0}^{n}{n+1\choose{i}}B_i = (n+1)(B_{n+1}-1)$$ 这个式子可以通过数学归纳法进行证明。 现在,我们已经得到了 $\sum_{i=0}^{n}{n+1\choose{i}}B_i$ 的计算公式,只需要预处理出前 $n$ 个伯努利数就可以在 $O(n)$ 的时间复杂度内解决这个问题了。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值