【BZOJ3812】主旋律

【题意】
【分析】

这题真是毒瘤
这道题要我们求这张图的强连通子图的数目。正面做有些困难,所以倒着做。
首先我们知道一个图如果不是强连通,则对它进行缩点后,一定会形成一个包含多个节点的DAG。于是,我们想到枚举强连通分量,缩成一个点后计算它们构成一个包含多个节点的DAG的方案数。
所以,我们设f[S]表示缩点后的点集S构成包含多个节点的DAG的方案数。
由于这样的DAG一定有若干个节点的出度为0,所以我们枚举出度为0的点集T。由于T中可能没有不存在出边的点,所以需要容斥。然后,我们就可以得到下面这个东西:
f [ S ] = ∑ T  S , T ≠ ∅ ( − 1 ) ∣ T ∣ − 1 ∗ f [ S − T ] ∗ 2 T 与 S − T 间 边 的 数 量 f[S]=\sum_{T \varsubsetneqq S, T \neq \varnothing} (-1)^{|T|-1}* f[S-T]*2^{T与S-T间边的数量} f[S]=TS,T̸=(1)T1f[ST]2TST
然而,由于要枚举强连通分量,时间复杂度将变得难以承受,于是,这个方法凉了。


但上面的方法给了我们一些启示:我们可以不枚举强连通分量,而是枚举构成那些缩点后出度为0的点是由哪些原来的点构成的,记这个点集为T。根据上式,当缩出来的点的数量为奇数时,容斥系数为1,否则为-1。
我们干脆把这两种情况塞在一起。设 f [ S ] f[S] f[S]为点集S的强连通子图数, g [ S ] g[S] g[S]为点集S构成奇数个强连通分量的方案数-构成偶数个强连通分量的方案数。这样, f [ S ] f[S] f[S]就比较好求了。
f [ S ] = 2 S 中 边 的 数 量 − ∑ T  S , T ≠ ∅ g [ T ] ∗ 2 S − T 中 边 的 数 量 + ( S − T ) 与 T 间 边 的 数 量 f[S]=2^{S中边的数量}-\sum_{T \varsubsetneqq S, T \neq \varnothing}g[T]*2^{S-T中边的数量+(S-T)与T间边的数量} f[S]=2STS,T̸=g[T]2ST+(ST)T
那么,怎么求 g [ S ] g[S] g[S]呢?
我们枚举S的子集T,若将 g [ S − T ] g[S-T] g[ST] f [ T ] f[T] f[T]相乘,并将它们累加,由乘法原理&加法原理,就得到了“点集(S-T)构成数个强连通分量的方案数-构成数个强连通分量的方案数”。若将 f [ S ] f[S] f[S]减去它们,就可以得到我们想要的东西了。为了避免重复统计,找一个点 u 让 T 始终包含 u,写成式子就是:
g [ S ] = f [ S ] − ∑ T  S , u ∈ T f [ T ] g [ S − T ] g[S]=f[S]-\sum_{T \varsubsetneq S,u \in T}f[T]g[S-T] g[S]=f[S]TS,uTf[T]g[ST]
通过一些预处理即可将复杂度做到 O ( 3 n ) O(3^n) O(3n)(详情参见代码)。

【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int mn = 17, mod = 1e9 + 7;
ll f[1 << mn], g[1 << mn], h[1 << mn], pw[mn * mn], w[1 << mn];
int in[1 << mn], out[1 << mn], bits[1 << mn];
int main()
{
    int n, m, i, S, a, b;
    scanf("%d%d", &n, &m);
    for(i = 1; i <= m; ++i)
	{
		scanf("%d%d", &a, &b);
		a = 1 << (a - 1), b = 1 << (b - 1);
		out[a] |= b, in[b] |= a;
	}
    pw[0] = 1;
    for(i = 1; i < n * n; i++)
        pw[i] = (pw[i - 1] << 1) % mod;
    bits[0] = 0;
    for(i = 1; i < (1 << n); i++)
        bits[i] = bits[i - (i & -i)] + 1;
    for(S = 1; S < (1 << n); S++)
    {
        int u = S & -S, s = S ^ u;
        for(i = s; i; i = (i - 1) & s)
            g[S] = (g[S] - f[S ^ i] * g[i]) % mod;
        h[S] = h[s] + bits[in[u] & s] + bits[out[u] & s];
        f[S] = pw[h[S]];
        for(i = S; i; i = (i - 1) & S)
        {
            if(i != S)
            {
                u = (i ^ S) & -(i ^ S);
                w[i] = w[i ^ u] + bits[out[u] & i] - bits[in[u] & (i ^ S)];
            }
            else
                w[i] = 0;
            f[S] = (f[S] - pw[h[S ^ i] + w[i]] * g[i]) % mod;
        }
        g[S] = (g[S] + f[S]) % mod;
    }
    printf("%lld\n", (f[(1 << n) - 1] + mod) % mod);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值