C++类欧几里得算法

文章目录


(本文用 绿 色 \color{green}绿色 绿标注一切函数,用 紫 色 \color{purple}紫色 标注部分可以 O ( 1 ) O(1) O(1)计算的常量式,便于观察)(不知道为什么加了颜色过后括号不能自动变大了,将就看吧= =)

概述

类欧几里得算法用于求形如 f ( a , b , c , n ) = ∑ i = 0 n ⌊ a i + b c ⌋ \color{green}{f(a, b, c, n)} \color{o} = \sum \limits_{i = 0}^{n} \left\lfloor \frac{a i + b}{c} \right\rfloor f(a,b,c,n)=i=0ncai+b的式子。这个式子有个几何意义,表示求下图中阴影部分中的整点个数(直线为 y = a x + b y=ax+b y=ax+b):
几何意义

算法

a ′ = a % c , b ′ = b % c a' = a \% c, b' = b \% c a=a%c,b=b%c,由定义式得 f ( a , b , c , n ) = ∑ i = 0 n ( ⌊ a ′ i + b ′ c ⌋ + ⌊ a c ⌋ i + ⌊ b c ⌋ ) = f ( a ′ , b ′ , c , n ) + ⌊ a c ⌋ ∑ i = 0 n i + ( n + 1 ) ⌊ b c ⌋ \begin{aligned} \color{green}{f(a, b, c, n)} \color{o} &= \sum_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor + \left\lfloor \frac{a}{c} \right\rfloor i + \left\lfloor \frac{b}{c} \right\rfloor \right) \\ &= \color{green} f(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor \sum_{i = 0}^{n} i \color{o} + \color{purple} (n + 1) \left\lfloor \frac{b}{c} \right\rfloor \end{aligned} f(a,b,c,n)=i=0n(cai+b+cai+cb)=f(a,b,c,n)+cai=0ni+(n+1)cb于是只需要处理 a , b < c a, b < c a,b<c的情况。

m = ⌊ a n + b c ⌋ m = \left\lfloor \frac{a n + b}{c} \right\rfloor m=can+b,则 f ( a , b , c , n ) = ∑ i = 0 n ∑ j = 0 m [ j ≤ ⌊ a i + b c ⌋ ] = ∑ i = 0 n ∑ j = 0 m − 1 [ j < ⌊ a i + b c ⌋ ] = ∑ j = 0 m − 1 ∑ i = 0 n [ j < ⌊ a i + b c ⌋ ] \begin{aligned} \color{green}{f(a, b, c, n)} \color{o} &= \sum_{i = 0}^{n} \sum_{j = 0}^{m} \left[ j \leq \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \\ &= \sum_{i = 0}^{n} \sum_{j = 0}^{m - 1} \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \\ &= \sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \end{aligned} f(a,b,c,n)=i=0nj=0m[jcai+b]=i=0nj=0m1[j<cai+b]=j=0m1i=0n[j<cai+b]

现在要想办法把里面变成 i i i为主元。
如下图所示,可以看出 0 ≤ j < 5 0 \leq j < 5 0j<5,结合图示可以得到 j < ⌊ a i + b c ⌋ ⇔ ( j + 1 ) c ≤ a i + b j < \left\lfloor \frac{a i + b}{c} \right\rfloor \Leftrightarrow (j + 1) c \leq a i + b j<cai+b(j+1)cai+b图示1
( j + 1 ) c < a i + b + 1 (j + 1) c < a i + b + 1 (j+1)c<ai+b+1,即 i > ⌊ c j − b + c − 1 a ⌋ i > \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor i>acjb+c1于是可以继续化简了 f ( a , b , c , n ) = ∑ j = 0 m − 1 ∑ i = 0 n [ i > ⌊ c j − b + c − 1 a ⌋ ] = ∑ j = 0 m − 1 ( n − ⌊ c j − b + c − 1 a ⌋ ) = m n − ∑ j = 0 m − 1 ⌊ c j − b + c − 1 a ⌋ = m n − f ( c , c − b − 1 , a , m − 1 ) \begin{aligned} \color{green}{f(a, b, c, n)} \color{o} &= \sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left[ i > \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right] \\ &= \sum_{j = 0}^{m - 1} \left( n - \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor\right) \\ &= \color{purple}{m n} \color{o} - \sum_{j = 0}^{m - 1} \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \\ &= \color{purple}{m n} \color{o} - \color{green}{{}f(c, c - b - 1, a, m - 1)} \end{aligned} f(a,b,c,n)=j=0m1i=0n[i>acjb+c1]=j=0m1(nacjb+c1)=mnj=0m1acjb+c1=mnf(c,cb1,a,m1)
仔细康康这个递推式,发现是由 f ( a , b , c , n ) f(a, b, c, n) f(a,b,c,n)变成了 f ( c , c − b % c − 1 , a % c , m − 1 ) f(c, c - b \% c - 1, a \% c, m - 1) f(c,cb%c1,a%c,m1) a , c a, c a,c两个参数的变化跟欧几里得算法一模一样,所以它的复杂度跟欧几里得求最大公约数的算法一样,也因此称它为类欧。

版题

洛谷P5170 【模板】类欧几里得算法

它还让你求 g ( a , b , c , n ) = ∑ i = 0 n ⌊ a i + b c ⌋ 2 \color{green} g(a, b, c, n) \color{o} = \sum \limits_{i = 0}^{n} \left\lfloor \frac{a i + b}{c} \right\rfloor ^ 2 g(a,b,c,n)=i=0ncai+b2,以及 h ( a , b , c , n ) = ∑ i = 0 n ( i ⌊ a i + b c ⌋ ) \color{green} h(a, b, c, n) \color{o} = \sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a i + b}{c} \right\rfloor \right) h(a,b,c,n)=i=0n(icai+b),直接刚,令 a ′ = a % c , b ′ = b % c a' = a \%c, b' = b \% c a=a%c,b=b%c g ( a , b , c , n ) = ∑ i = 0 n ( ⌊ a ′ i + b ′ c ⌋ + ⌊ a c ⌋ i + ⌊ b c ⌋ ) 2 = g ( a ′ , b ′ , c , n ) + ⌊ a c ⌋ 2 ∑ i = 0 n i 2 + ∑ i = 0 n ⌊ b c ⌋ 2 + 2 ∑ i = 0 n ( ⌊ a ′ i + b ′ c ⌋ ⌊ a c ⌋ i ) + 2 ∑ i = 0 n ( ⌊ a ′ i + b ′ c ⌋ ⌊ b c ⌋ ) + 2 ∑ i = 0 n ( i ⌊ a c ⌋ ⌊ b c ⌋ ) = g ( a ′ , b ′ , c , n ) + ⌊ a c ⌋ 2 ∑ i = 0 n i 2 + ∑ i = 0 n ⌊ b c ⌋ 2 + 2 ⌊ a c ⌋ h ( a ′ , b ′ , c , n ) + 2 ⌊ b c ⌋ f ( a ′ , b ′ , c , n ) + 2 ∑ i = 0 n ( i ⌊ a c ⌋ ⌊ b c ⌋ ) = g ( a ′ , b ′ , c , n ) + 2 ⌊ a c ⌋ h ( a ′ , b ′ , c , n ) + 2 ⌊ b c ⌋ f ( a ′ , b ′ , c , n ) + ∑ i = 0 n ⌊ b c ⌋ 2 + ⌊ a c ⌋ 2 ∑ i = 0 n i 2 + 2 ∑ i = 0 n ( i ⌊ a c ⌋ ⌊ b c ⌋ ) h ( a , b , c , n ) = ∑ i = 0 n ( i ⌊ a ′ i + b ′ c ⌋ + ⌊ a c ⌋ i 2 + ⌊ b c ⌋ i ) = h ( a ′ , b ′ , c , n ) + ⌊ a c ⌋ ∑ i = 0 n i 2 + ⌊ b c ⌋ ∑ i = 0 n i \begin{aligned} \color{green} g(a, b, c, n) \color{o} = &\sum \limits_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor + \left\lfloor \frac{a}{c} \right\rfloor i + \left\lfloor \frac{b}{c} \right\rfloor\right)^2 \\ = &\color{green} g(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor ^ 2 \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} \sum \limits_{i = 0}^{n} \left\lfloor \frac{b}{c} \right\rfloor ^ 2 \color{o} + 2 \sum \limits_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor \left\lfloor \frac{a}{c} \right\rfloor i \right) \\ &+ 2 \sum \limits_{i = 0}^{n} \left( \left\lfloor \frac{a' i + b'}{c} \right\rfloor \left\lfloor \frac{b}{c} \right\rfloor \right) + \color{purple}2 \sum \limits_{i = 0}^{n} \left( i\left\lfloor \frac{a}{c} \right\rfloor\left\lfloor \frac{b}{c} \right\rfloor\right) \\ = &\color{green} g(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor ^ 2 \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} \sum \limits_{i = 0}^{n} \left\lfloor \frac{b}{c} \right\rfloor ^ 2 \color{o} + \color{purple} 2 \left\lfloor \frac{a}{c} \right\rfloor \color{green} h(a', b', c, n) \\ &+ \color{purple} 2 \left\lfloor \frac{b}{c} \right\rfloor \color{green} f(a', b', c, n) \color{o} + \color{purple} 2 \sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a}{c} \right\rfloor\left\lfloor \frac{b}{c} \right\rfloor\right) \\ = &\color{green} g(a', b', c, n) \color{o} + \color{purple} 2 \left\lfloor \frac{a}{c} \right\rfloor \color{green} h(a', b', c, n) + \color{purple} 2 \left\lfloor \frac{b}{c} \right\rfloor \color{green} f(a', b', c, n) \\ &\color{o} + \color{purple} \sum \limits_{i = 0}^{n} \left\lfloor \frac{b}{c} \right\rfloor ^ 2 \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor ^ 2 \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} 2 \sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a}{c} \right\rfloor\left\lfloor \frac{b}{c} \right\rfloor\right) \\ \color{green} h(a, b, c, n) \color{o} = &\sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a' i + b'}{c} \right\rfloor + \left\lfloor \frac{a}{c} \right\rfloor i ^ 2 + \left\lfloor \frac{b}{c} \right\rfloor i \right) \\ = &\color{green} h(a', b', c, n) \color{o} + \color{purple} \left\lfloor \frac{a}{c} \right\rfloor \sum \limits_{i = 0}^{n} i ^ 2 \color{o} + \color{purple} \left\lfloor \frac{b}{c} \right\rfloor \sum \limits_{i = 0}^{n} i \end{aligned} g(a,b,c,n)====h(a,b,c,n)==i=0n(cai+b+cai+cb)2g(a,b,c,n)+ca2i=0ni2+i=0ncb2+2i=0n(cai+bcai)+2i=0n(cai+bcb)+2i=0n(icacb)g(a,b,c,n)+ca2i=0ni2+i=0ncb2+2cah(a,b,c,n)+2cbf(a,b,c,n)+2i=0n(icacb)g(a,b,c,n)+2cah(a,b,c,n)+2cbf(a,b,c,n)+i=0ncb2+ca2i=0ni2+2i=0n(icacb)i=0n(icai+b+cai2+cbi)h(a,b,c,n)+cai=0ni2+cbi=0ni接下来考虑 a , b < c a, b < c a,b<c的情况,这里有一个显然而神奇的变形: x 2 = 2 ⋅ x ( x + 1 ) 2 − x = 2 ∑ i = 0 n i − x x^2 = 2 \cdot \frac{x(x + 1)}{2}-x = 2\sum_{i = 0}^{n} i - x x2=22x(x+1)x=2i=0nix于是,令 m = ⌊ a n + b c ⌋ m = \left\lfloor \frac{a n + b}{c} \right\rfloor m=can+b g ( a , b , c , n ) = ∑ i = 0 n ⌊ a i + b c ⌋ 2 = ∑ i = 0 n ( 2 ∑ j = 0 ⌊ a i + b c ⌋ j − ⌊ a i + b c ⌋ ) = 2 ∑ i = 0 n ∑ j = 0 ⌊ a i + b c ⌋ j − f ( a , b , c , n ) = 2 ∑ j = 0 m − 1 ( ( j + 1 ) ∑ i = 0 n [ j < ⌊ a i + b c ⌋ ] ) − f ( a , b , c , n ) = 2 ∑ j = 0 m − 1 ( ( j + 1 ) ∑ i = 0 n [ i > ⌊ c j − b + c − 1 a ⌋ ] ) − f ( a , b , c , n ) = 2 ∑ j = 0 m − 1 ( ( j + 1 ) ( n − ⌊ c j − b + c − 1 a ⌋ ) ) − f ( a , b , c , n ) = 2 n ∑ j = 0 m − 1 ( j + 1 ) − 2 ∑ j = 0 m − 1 ( ( j + 1 ) ⌊ c j − b + c − 1 a ⌋ ) − f ( a , b , c , n ) = 2 n ∑ j = 0 m − 1 ( j + 1 ) − 2 ( h ( c , c − b − 1 , a , m − 1 ) + f ( c , c − b − 1 , a , m − 1 ) ) − f ( a , b , c , n ) h ( a , b , c , n ) = ∑ i = 0 n ( i ⌊ a i + b c ⌋ ) = ∑ j = 0 m − 1 ∑ i = 0 n ( i [ j < ⌊ a i + b c ⌋ ] ) = ∑ j = 0 m − 1 ∑ i = 0 n ( i [ i < ⌊ c j − b + c − 1 a ⌋ ] ) = ∑ j = 0 m − 1 ∑ i = ⌊ c j − b + c − 1 a ⌋ + 1 n i = ∑ j = 0 m − 1 ( 1 2 ( n + ⌊ c j − b + c − 1 a ⌋ + 1 ) ( n − ⌊ c j − b + c − 1 a ⌋ ) ) = 1 2 ∑ j = 0 m − 1 ( n ( n + 1 ) ) + 1 2 n ∑ j = 0 m − 1 ⌊ c j − b + c − 1 a ⌋ − 1 2 ∑ j = 0 m − 1 ⌊ c j − b + c − 1 a ⌋ 2 − 1 2 ( n + 1 ) ∑ j = 0 m − 1 ⌊ c j − b + c − 1 a ⌋ = 1 2 ∑ j = 0 m − 1 ( n ( n + 1 ) ) + 1 2 g ( c , c − b − 1 , a , m − 1 ) − 1 2 f ( c , c − b − 1 , a , m − 1 ) \begin{aligned} \color{green}{g(a, b, c, n)} \color{black} = &\sum_{i = 0}^{n} \left\lfloor \frac{a i + b}{c} \right\rfloor ^ 2 \\ = &\sum_{i = 0}^{n} \left( 2 \sum_{j = 0}^{\left\lfloor \frac{a i + b}{c} \right\rfloor} j - \left\lfloor \frac{a i + b}{c} \right\rfloor\right) \\ = &2\sum_{i = 0}^{n} \sum_{j = 0}^{\left\lfloor \frac{a i + b}{c} \right\rfloor} j - \color{green} f(a, b, c, n) \\ = &2\sum_{j = 0}^{m - 1} \left( (j + 1)\sum_{i = 0}^{n} \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \right) - \color{green} f(a, b, c, n) \\ = &2\sum_{j = 0}^{m - 1} \left( (j + 1)\sum_{i = 0}^{n} \left[ i > \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right] \right) - \color{green} f(a, b, c, n) \\ = &2\sum_{j = 0}^{m - 1} \left( (j + 1)(n - \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor) \right) - \color{green} f(a, b, c, n) \\ = &\color{purple} 2 n \sum_{j = 0}^{m - 1} (j + 1) \color{o} - 2\sum_{j = 0}^{m - 1} \left( (j + 1)\left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right) - \color{green} f(a, b, c, n) \\ = &\color{purple} 2 n \sum_{j = 0}^{m - 1} (j + 1) \color{o} - 2 (\color{green} h(c, c - b - 1, a, m - 1) \color{o} + \color{green} f(c, c - b - 1, a, m - 1) \color{o} ) - \color{green} f(a, b, c, n) \\ \color{green} h(a, b, c, n) \color{o} = &\sum \limits_{i = 0}^{n} \left( i \left\lfloor \frac{a i + b}{c} \right\rfloor \right) \\ = &\sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left( i \left[ j < \left\lfloor \frac{a i + b}{c} \right\rfloor \right] \right) \\ = &\sum_{j = 0}^{m - 1} \sum_{i = 0}^{n} \left( i \left[ i < \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right] \right) \\ = &\sum_{j = 0}^{m - 1} \sum_{i = \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor + 1}^{n} i \\ = & \sum_{j = 0}^{m - 1} \left( \frac{1}{2} \left(n + \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor + 1 \right) \left(n - \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \right) \right) \\ = &\color{purple} \frac{1}{2} \sum_{j = 0}^{m - 1} (n (n + 1)) \color{o} + \frac{1}{2} n \sum_{j = 0}^{m - 1} \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor - \frac{1}{2} \sum_{j = 0}^{m - 1}\left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor ^ 2 \\ &- \frac{1}{2} (n + 1) \sum_{j = 0}^{m - 1} \left\lfloor \frac{c j - b + c - 1}{a} \right\rfloor \\ = &\color{purple} \frac{1}{2} \sum_{j = 0}^{m - 1} (n (n + 1)) \color{o} + \color{purple}\frac{1}{2} \color{green} g(c, c - b - 1, a, m - 1) \color{o} - \color{purple}\frac{1}{2} \color{green} f(c, c - b - 1, a, m - 1) \end{aligned} g(a,b,c,n)========h(a,b,c,n)=======i=0ncai+b2i=0n2j=0cai+bjcai+b2i=0nj=0cai+bjf(a,b,c,n)2j=0m1((j+1)i=0n[j<cai+b])f(a,b,c,n)2j=0m1((j+1)i=0n[i>acjb+c1])f(a,b,c,n)2j=0m1((j+1)(nacjb+c1))f(a,b,c,n)2nj=0m1(j+1)2j=0m1((j+1)acjb+c1)f(a,b,c,n)2nj=0m1(j+1)2(h(c,cb1,a,m1)+f(c,cb1,a,m1))f(a,b,c,n)i=0n(icai+b)j=0m1i=0n(i[j<cai+b])j=0m1i=0n(i[i<acjb+c1])j=0m1i=acjb+c1+1nij=0m1(21(n+acjb+c1+1)(nacjb+c1))21j=0m1(n(n+1))+21nj=0m1acjb+c121j=0m1acjb+c1221(n+1)j=0m1acjb+c121j=0m1(n(n+1))+21g(c,cb1,a,m1)21f(c,cb1,a,m1)

代码
用结构体存,同步计算。
每个字符都要看清楚!

#include <cstdio>

typedef long long LL;

const LL MOD = 998244353;
const LL Inv2 = 499122177, Inv6 = 166374059;

struct Data {
	LL f, g, h;
	Data() { f = g = h = 0; }
	Data(LL _f, LL _g, LL _h) {
		f = _f, g = _g, h = _h;
	}
};

Data Euclid(LL a, LL b, LL c, LL n) {
	LL a1 = a / c, b1 = b / c, m = (a * n + b) / c;
	if (a == 0)
		return Data(b1 * (n + 1) % MOD,
					b1 * b1 % MOD * (n + 1) % MOD,
					b1 * n % MOD * (n + 1) % MOD * Inv2 % MOD);
	if (a >= c || b >= c) {
		Data T = Euclid(a % c, b % c, c, n);
		return Data((T.f + a1 * n % MOD * (n + 1) % MOD * Inv2 % MOD + (n + 1) * b1 % MOD) % MOD,
					(T.g + 2 * a1 % MOD * T.h % MOD + 2 * b1 % MOD * T.f % MOD + (n + 1) * b1 % MOD * b1 % MOD + a1 * b1 % MOD * n % MOD * (n + 1) % MOD + a1 * a1 % MOD * n % MOD * (n + 1) % MOD * (2 * n + 1) % MOD * Inv6 % MOD) % MOD,
					(T.h + a1 * n % MOD * (n + 1) % MOD * (2 * n + 1) % MOD * Inv6 % MOD + b1 * n % MOD * (n + 1) % MOD * Inv2 % MOD) % MOD);
	}
	Data T = Euclid(c, c - b - 1, a, m - 1);
	Data R(((m * n % MOD - T.f) % MOD + MOD) % MOD, 0, 0);
	return Data(R.f,
				((n * m % MOD * (m + 1) % MOD - 2 * T.h % MOD - 2 * T.f % MOD - R.f) % MOD + MOD) % MOD,
				((m * n % MOD * (n + 1) % MOD - T.g - T.f) % MOD + MOD) % MOD * Inv2 % MOD);
}

int main() {
	int T; scanf("%d", &T);
	while (T--) {
		int N, A, B, C;
		scanf("%d%d%d%d", &N, &A, &B, &C);
		Data Ans = Euclid(A, B, C, N);
		printf("%lld %lld %lld\n", Ans.f, Ans.g, Ans.h);
	}
}

强推OI WiKi的类欧几里得算法

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值