[BZOJ 3684] 大朋友和多叉树(生成函数 + 拉格朗日反演) | 错题本

题目

[BZOJ 3684] 大朋友和多叉树

分析

类似于 小朋友和二叉树,设 d p [ i ] dp[i] dp[i] 表示叶子结点个数为 i i i 的符合条件的多叉树数量,枚举根节点的度数和各个子树的叶子结点个数得到 DP 式(注意边界,这个边界是为了转移方便,即直接接一个叶子,而没有实际意义) d p [ i ] = { ∑ j = 1 i − 1 ∑ k ⊂ Z + ,   k 1 + k 2 + ⋯ + k j = i − 1 d p [ k 1 ] d p [ k 2 ] ⋯ d p [ k j ] i > 1 1 i = 1 dp[i] = \begin{cases} \sum\limits_{j = 1}^{i - 1}\sum_{k \subset \Z^+,\ k_1 + k_2 + \cdots + k_j = i - 1}dp[k_1]dp[k_2]\cdots dp[k_j] & i > 1\\ 1 & i = 1\end{cases} dp[i]=j=1i1kZ+, k1+k2++kj=i1dp[k1]dp[k2]dp[kj]1i>1i=1 然后对其构造生成函数 F ( x ) = ∑ i = 0 s d p [ i ] x i F(x) = \sum_{i = 0}^{s} dp[i]x^i F(x)=i=0sdp[i]xi,可以得到 F ( x ) = ∑ i ∈ D F i ( x ) + x F(x) = \sum_{i \in D} F^i(x) + x F(x)=iDFi(x)+x 注意 1 ∉ D 1 \notin D 1/D,但 d p [ 1 ] = 1 dp[1] = 1 dp[1]=1,所以要加 x x x

构造多项式 G ( x ) = x − ∑ i = 0 s [ i ∈ D ] ⋅ x i G(x) = x - \sum_{i = 0}^s [i \in D]\cdot x^i G(x)=xi=0s[iD]xi G ( F ( x ) ) = x G(F(x)) = x G(F(x))=x 拉格朗日反演求复合逆 即可。

错因

  • 950009857 950009857 950009857 的原根是 5 5 5不知道原根怎么求,以后再补吧

代码

#include <bits/stdc++.h>

#define RG register

typedef long long LL;

int Read() {
    int x = 0; bool f = false; char c = getchar();
    while (c < '0' || c > '9')
        f |= c == '-', c = getchar();
    while (c >= '0' && c <= '9')
        x = (x * 10) + (c ^ 48), c = getchar();
    return f ? -x : x;
}

template <const int _MOD> struct ModNumber { // 为了效率 (事实上还是不高) 省去了一些实用性
    int x;
    inline ModNumber() { x = 0; }
    inline ModNumber(const int &y) { x = y; }
    // 需保证 y 的范围! (如果在这 % _MOD 会 T, 因为代码中大量调用该构造函数)
    // (当然, 开 O2 可以起飞)
    inline int Int() { return x; }
    inline ModNumber Pow(LL y) const {
        RG int ret = 1, tmp = x;
        while (y) {
            if (y & 1) ret = ((LL)ret * tmp) % _MOD;
            y >>= 1; tmp = ((LL)tmp * tmp) % _MOD;
        }
        return ModNumber(ret);
    }
    inline bool operator == (const ModNumber &y) const { return x == y.x; }
    inline bool operator != (const ModNumber &y) const { return x != y.x; }
    inline bool operator < (const ModNumber &y) const { return x < y.x; }
    inline bool operator > (const ModNumber &y) const { return x > y.x; }
    inline bool operator <= (const ModNumber &y) const { return x <= y.x; }
    inline bool operator >= (const ModNumber &y) const { return x >= y.x; }
    inline ModNumber operator + (const ModNumber &y) const { return (x + y.x >= _MOD) ? (x + y.x - _MOD) : (x + y.x); }
    inline ModNumber operator - (const ModNumber &y) const { return (x - y.x < 0) ? (x - y.x + _MOD) : (x - y.x); }
    inline ModNumber operator * (const ModNumber &y) const { return ModNumber((LL)x * y.x % _MOD); }
    inline ModNumber operator / (const ModNumber &y) const { return *this * y.Pow(_MOD - 2); }
    inline ModNumber operator ^ (const LL &y) const { return Pow(y); }
    inline void operator += (const ModNumber &y) { *this = *this + y; }
    inline void operator *= (const ModNumber &y) { *this = *this * y; }
    inline void operator -= (const ModNumber &y) { *this = *this - y; }
    inline void operator /= (const ModNumber &y) { *this = *this / y; }
    inline void operator ^= (const LL &y) const { *this = *this ^ y; }
};

const int MAXN = 100000 * 4; // 所有 MAXN 都要开 4 倍!
const int MOD = 950009857;

typedef ModNumber<MOD> Int;

const Int __G = 5, One = 1, Two = 2, InvTwo = One / Two;

namespace Polynomial {
    // 好氧, 好氧, 好氧! (无氧可能原地去世)
    // 所有 n: 多项式的项数 (即次数 + 1)
    // 数组从 0 开始存
    int Rev[MAXN + 5];
    Int G0[2][MAXN + 5];

    void GetG0(const int &n) { // 使用前必须先初始化 G0
        for (RG int i = 2; i <= n; i <<= 1) {
            G0[0][i] = __G ^ ((MOD - 1) / i);
            G0[1][i] = G0[0][i] ^ (MOD - 2);
        }
    }

    inline void GetRev(const int n) { // Rev 在函数内初始化
        for (RG int i = 0; i < n; i++)
            Rev[i] = (Rev[i >> 1] >> 1) | ((i & 1) * (n >> 1));
    }

    inline int ToPow(const int &n) { // lim 在函数内初始化
        RG int ret = 1;
        while (ret < n)
            ret <<= 1;
        return ret;
    }

    void PrintPoly(Int *A, const int &n) {
        for (RG int i = 0; i < n; i++)
            printf("%d ", A[i].x);
        puts("");
    }

    void ReadPoly(Int *A, const int &n) {
        for (RG int i = 0; i < n; i++)
            A[i].x = Read();
    }

    void NTT(Int *A, const int &n, const int &opt) {
        for (RG int i = 0; i < n; i++)
            if (i < Rev[i])
                std::swap(A[i], A[Rev[i]]);
        for (RG int mid = 1; mid < n; mid <<= 1) {
            const int k = mid << 1;
            const Int g0 = G0[opt][k];
            for (RG int i = 0; i < n; i += k) {
                Int g = 1;
                for (RG int j = 0; j < mid; j++, g *= g0) {
                    Int tmp1 = A[i + j], tmp2 = A[i + j + mid] * g;
                    A[i + j] = tmp1 + tmp2, A[i + j + mid] = tmp1 - tmp2;
                }
            }
        }
        if (opt == 1) {
            const Int inv = One / n;
            for (RG int i = 0; i < n; i++)
                A[i] *= inv;
        }
    }

    Int A0[MAXN + 5], B0[MAXN + 5];

    void Multiply(const Int *A, const Int *B, Int *P, const int &n, const int &m) { // P = A * B
        int lim = ToPow(n + m - 1); GetRev(lim);
        for (int i = 0; i < lim; i++) A0[i] = B0[i] = 0;
        for (RG int i = 0; i < n; i++) A0[i] = A[i];
        for (RG int i = 0; i < m; i++) B0[i] = B[i];
        NTT(A0, lim, 0), NTT(B0, lim, 0);
        for (RG int i = 0; i < lim; i++) P[i] = A0[i] * B0[i];
        NTT(P, lim, 1);
    }

    Int A1[MAXN + 5], B1[MAXN + 5], C1[MAXN + 5];

    void Inverse(const Int *A, Int *B, const int &n) { // B = 1 / A, A 不变
        if (n == 1) { B[0] =  A[0] ^ (MOD - 2); return; }
        Inverse(A, B, (n + 1) >> 1);
        const int lim = ToPow(n + n - 1); GetRev(lim);
        for (RG int i = 0; i < n; i++) A1[i] = A[i], B1[i] = B[i];
        for (RG int i = n; i < lim; i++) A1[i] = B1[i] = 0;
        NTT(A1, lim, 0), NTT(B1, lim, 0);
        for (RG int i = 0; i < lim; i++) C1[i] = A1[i] * B1[i] * B1[i];
        NTT(C1, lim, 1);
        for (RG int i = 0; i < n; i++) B[i] = Two * B[i] - C1[i];
        for (RG int i = n; i < lim; i++) B[i] = 0;
    }

    Int C2[MAXN + 5], InvB[MAXN + 5], B2[MAXN + 5];

    void Sqrt(const Int *A, Int *B, const int &n) { // B = √A, A 不变 (默认开根的多项式常数项为 1)
        if (n == 1) { B[0] = 1; return; }
        Sqrt(A, B, (n + 1) >> 1);
        Inverse(B, InvB, n);
        Multiply(B, B, B2, n, n);
        for (RG int i = 0; i < n; i++) InvB[i] *= InvTwo;
        for (RG int i = 0; i < n; i++) B2[i] += A[i];
        Multiply(B2, InvB, C2, n, n);
        for (RG int i = 0; i < n; i++) B[i] = C2[i];
    }

    Int AR[MAXN + 5], BR[MAXN + 5], InvBR[MAXN + 5], A2[MAXN + 5], CR[MAXN + 5], C3[MAXN + 5];

    void Divide(const Int *A, const Int *B, Int *C, Int *R, const int &n, const int &m) { // C = A / B, R = A % B, A 不变, B 不变
        for (RG int i = 0; i < n; i++) AR[i] = A[n - i - 1], A2[i] = A[i];
        for (RG int i = 0; i < n - m + 1; i++) BR[i] = B[m - i - 1];
        Inverse(BR, InvBR, n - m + 1);
        Multiply(AR, InvBR, CR, n, n - m + 1);
        for (int i = 0; i < n - m + 1; i++) C[i] = CR[n - m - i];
        Multiply(B, C, C3, m, n - m + 1);
        for (RG int i = 0; i < m - 1; i++) R[i] = A[i] - C3[i];
    }

    void Derivative(const Int *A, Int *B, const int &n) { // B = A', A 不变
        for (RG int i = 0; i < n - 1; i++)
            B[i] = A[i + 1] * (i + 1);
        B[n - 1] = 0;
    }

    void Integral(const Int *A, Int *B, const int &n) { // B = ∫A, A 不变
        for (RG int i = 1; i < n; i++)
            B[i] = A[i - 1] / i;
        B[0] = 0;
    }

    Int AD[MAXN + 5], InvA[MAXN + 5], C4[MAXN + 5];

    void Ln(const Int *A, Int *B, const int &n) { // B = ln A, A 不变
        Derivative(A, AD, n);
        Inverse(A, InvA, n);
        Multiply(AD, InvA, C4, n, n);
        Integral(C4, B, n);
    }

    Int LnB[MAXN + 5], B3[MAXN + 5], B4[MAXN + 5];

    void Exp(const Int *A, Int *B, const int &n) { // B = e^A, A 不变
        if (n == 1) { B[0] = 1; return; }
        Exp(A, B, (n + 1) >> 1); Ln(B, LnB, n);
        const int lim = ToPow(n + n - 1);
        for (int i = 0; i < n; i++) B3[i] = A[i] - LnB[i], B4[i] = B[i]; B3[0] += One;
        Multiply(B3, B4, B, n, n); for (int i = n; i < lim; i++) B[i] = 0;
    }

    Int KA[MAXN + 5], LnA[MAXN + 5];

    void Pow(const Int *A, Int *B, const int &n, const Int &k) { // B = A^k, A 不变
        Polynomial::Ln(A, LnA, n); for (int i = 0; i < n; i++) KA[i] = LnA[i] * k; Exp(KA, B, n);
    }

    Int A3[MAXN + 5], AP[MAXN + 5], C5[MAXN + 5];

    Int CompoundInverse(const Int *A, const int &k, const Int *C = NULL) { // A(B(x)) = x 或 A(B(x)) = C(x), 返回 [x^k]B
        for (int i = 0; i < k; i++) A3[i] = A[i + 1];
        Pow(A3, AP, k, k); Inverse(AP, A3, k);
        if (C == NULL) return A3[k - 1] / k;
        Derivative(A3, AP, k); Multiply(AP, C, C5, k, k);
        return C5[k - 1] / k;
    }
}

int S, M;
Int F[MAXN + 5];

int main() {
    Polynomial::GetG0(MAXN);
    S = Read(), M = Read();
    for (int i = 1; i <= M; i++)
        F[Read()] = MOD - 1;
    F[1] = 1;
    printf("%d", Polynomial::CompoundInverse(F, S).x);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值