题目
题目描述
奶牛们打算通过锻炼来培养自己的运动细胞,作为其中的一员,贝茜选择的 运动方式是每天进行N(1 <= N <= 10,000)分钟的晨跑。在每分钟的开始,贝茜会选择下一分钟是用来跑步还是休息。 贝茜的体力限制了她跑步的距离。
更具体地,如果贝茜选择在第i分钟内跑步,她可以在这一分钟内跑D_i(1 <= D_i <= 1,000)米,并且她的疲劳度会增加 1。不过,无论何时贝茜的疲劳度都不能超过M(1 <= M <= 500)。如果贝茜选择休息,那么她的疲劳度就会每分钟减少1,但她必须休息到疲劳度恢复到0为止。 在疲劳度为0时休息的话,疲劳度不会再变动。晨跑开始时,贝茜的疲劳度为0。 还有,在N分钟的锻炼结束时,贝茜的疲劳度也必须恢复到0,否则她将没有 足够的精力来对付这一整天中剩下的事情。
请你计算一下,贝茜最多能跑多少米。
输入格式
第1行: 2个用空格隔开的整数:N 和 M
第2..N+1行: 第i+1为1个整数:D_i
输出格式
第1行: 输出1个整数,表示在满足所有限制条件的情况下,贝茜能跑的最大距离
样例输入
5 2
5
3
4
2
10
样例输出
9
输出说明
贝茜在第1分钟内选择跑步(跑了5米),在第2分钟内休息,在第3分钟内跑步(跑了4米),剩余的时间都用来休息。因为在晨跑结束时贝茜的疲劳度必须为0,所以她不能在第5分钟内选择跑步。
分析
DP,定义状态 f[i][j] f [ i ] [ j ] :前 i i 分钟(包括第分钟),第 i i 分钟最后疲劳度为时,能跑的最大距离。
由于它要求一休息就要彻底休息完,所以首先考虑 f[i][0] f [ i ] [ 0 ] (此时第 i i 分钟显然是要休息的):
- 如果第分钟已经休息彻底了,则
f[i][0]=f[i−1][0]
f
[
i
]
[
0
]
=
f
[
i
−
1
]
[
0
]
;
- 否则,我们只能从第 (i−j) ( i − j ) 分钟一直休息到第 i i 分钟,这期间是不跑步的,即。
所以: f[i][0]=max(f[i−1][0],f[i−j][j])|1≤j<min(i,M+1) f [ i ] [ 0 ] = m a x ( f [ i − 1 ] [ 0 ] , f [ i − j ] [ j ] ) | 1 ≤ j < m i n ( i , M + 1 ) 。
其他情况就简单了,只能跑步: f[i][j]=f[i−1][j−1]+D[i]|1≤j≤M f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + D [ i ] | 1 ≤ j ≤ M 。
代码
#include<cstdio> #include<algorithm> using namespace std; #define MAXM 500 #define MAXN 10000 int N,M; int D[MAXN+5]; int f[MAXN+5][MAXM+5]; int main(){ freopen("morning.in", "r" ,stdin); freopen("morning.out","w",stdout); scanf("%d%d",&N,&M); for(int i=1;i<=N;i++) scanf("%d",&D[i]); for(int i=1;i<=N;i++){ f[i][0]=f[i-1][0]; for(int j=1;j<=M;j++){ f[i][j]=f[i-1][j-1]+D[i]; if(i>j) f[i][0]=max(f[i][0],f[i-j][j]); //注意判断i>j,当你把两种情况放在一个循环里时 } } printf("%d",f[N][0]); }