【半期】1.晨练计划

版权声明:本文为博主原创文章,不管你喜不喜欢都请在注明作者后转载~( ̄▽ ̄~) https://blog.csdn.net/C20190102/article/details/80349526

题目

题目描述

奶牛们打算通过锻炼来培养自己的运动细胞,作为其中的一员,贝茜选择的 运动方式是每天进行N(1 <= N <= 10,000)分钟的晨跑。在每分钟的开始,贝茜会选择下一分钟是用来跑步还是休息。 贝茜的体力限制了她跑步的距离。
更具体地,如果贝茜选择在第i分钟内跑步,她可以在这一分钟内跑D_i(1 <= D_i <= 1,000)米,并且她的疲劳度会增加 1。不过,无论何时贝茜的疲劳度都不能超过M(1 <= M <= 500)。如果贝茜选择休息,那么她的疲劳度就会每分钟减少1,但她必须休息到疲劳度恢复到0为止。 在疲劳度为0时休息的话,疲劳度不会再变动。晨跑开始时,贝茜的疲劳度为0。 还有,在N分钟的锻炼结束时,贝茜的疲劳度也必须恢复到0,否则她将没有 足够的精力来对付这一整天中剩下的事情。
请你计算一下,贝茜最多能跑多少米。

输入格式

第1行: 2个用空格隔开的整数:N 和 M
第2..N+1行: 第i+1为1个整数:D_i

输出格式

第1行: 输出1个整数,表示在满足所有限制条件的情况下,贝茜能跑的最大距离

样例输入

5 2
5
3
4
2
10

样例输出

9

输出说明

贝茜在第1分钟内选择跑步(跑了5米),在第2分钟内休息,在第3分钟内跑步(跑了4米),剩余的时间都用来休息。因为在晨跑结束时贝茜的疲劳度必须为0,所以她不能在第5分钟内选择跑步。

分析

DP,定义状态f[i][j]i分钟(包括第i分钟),第i分钟最后疲劳度为j时,能跑的最大距离。

由于它要求一休息就要彻底休息完,所以首先考虑f[i][0](此时第i分钟显然是要休息的):

  • 如果第(i1)分钟已经休息彻底了,则f[i][0]=f[i1][0]
  • 否则,我们只能从第(ij)分钟一直休息到第i分钟,这期间是不跑步的,即f[i][j]=f[i1][j]

所以:f[i][0]=max(f[i1][0],f[ij][j])|1j<min(i,M+1)

其他情况就简单了,只能跑步:f[i][j]=f[i1][j1]+D[i]|1jM

代码

#include<cstdio>
#include<algorithm>
using namespace std;

#define MAXM 500
#define MAXN 10000
int N,M;
int D[MAXN+5];
int f[MAXN+5][MAXM+5];

int main(){
    freopen("morning.in", "r" ,stdin);
    freopen("morning.out","w",stdout);
    scanf("%d%d",&N,&M);
    for(int i=1;i<=N;i++)
        scanf("%d",&D[i]);
    for(int i=1;i<=N;i++){
        f[i][0]=f[i-1][0];
        for(int j=1;j<=M;j++){
            f[i][j]=f[i-1][j-1]+D[i];
            if(i>j) f[i][0]=max(f[i][0],f[i-j][j]);
            //注意判断i>j,当你把两种情况放在一个循环里时
        }
    }
    printf("%d",f[N][0]);
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页