3528:最小新整数
-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
-
给定一个十进制正整数n(0 < n < 1000000000),每个数位上数字均不为0。n的位数为m。
现在从m位中删除k位(0<k < m),求生成的新整数最小为多少?
例如: n = 9128456, k = 2, 则生成的新整数最小为12456
输入
-
第一行t, 表示有t组数据;
接下来t行,每一行表示一组测试数据,每组测试数据包含两个数字n, k。
输出
- t行,每行一个数字,表示从n中删除k位后得到的最小整数。 样例输入
-
2 9128456 2 1444 3
样例输出
-
12456 1
这是OpenJudge上的一道题,戳我查看。
—————————————————分析——————————————————
这是一道要运用贪心的题,问题是怎么贪。
既然要使删除后的数最小,那么我们就从第一位开始。我们来找找规律:
例:1444 3
我们发现,最优解是去掉后3位(1444),也就是1,不管怎样去都会比1多。
那么是不是所有的数都满足这个规律呢?
例:9128456 2
按照上面的方法去数得出的数为91284,但这并不是最优解,最优解应该是12456。
说明这个方法只对不下降序列有用。
例:Input 123456 3 Output 123
那么其他的高精度数怎么处理呢?
其实规律是这样的:
1.先从头开始找出一个不下降序列。
2.删除这个不下降序列的最后一位。
3.重复执行。
所以9128456的执行过程是这样的:
最长不下降序列为9->去掉9->原序列变为128456->最长不下降序列为128
->去掉8->原序列为128456->已经去掉了2位数->输出12456
************************代码************************
#include<iostream>
using namespace std;
int main()
{
string s;
int k,len,i,n;
cin>>n;
for(int L=0;L<n;L++)
{
cin>>s>>k;
len=s.length();
while(k--)
for(i=0;i<len;i++)
if(s[i+1]<s[i]) {s.erase(i,1);break;}
cout<<s<<endl;
}
return 0;
}