1775:采药

1775:采药


总时间限制: 
1000ms 
内存限制: 
65536kB
描述
辰辰是个很有潜能、天资聪颖的孩子,他的梦想是称为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?
输入
输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出
输出只包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
样例输入
70 3
71 100
69 1
1 2
样例输出
3
来源
NOIP 2005



这是OpenJudge上的一道原题,戳我查看

————————————分析————————————

这道题是典型的0-1背包问题。

所谓0-1背包,就是选或不选以达成最优解。

那么这道题的本意也就是:选在时间范围内尽量多的价值的

草药。

分析完后,我们就进入这个题。

我们可以定义一个结构体Node表示某株草药采取需要用的时

间和它的价值。定义一个二维的f数组表示采取前i株草药的

最优解。

因此,不难推出状态转移方程:

f[i][j]=max(f[i-1][j],f[i-1][j-a[i].t]+a[i].v);

(1<=i<=n)(a[i].t<=j<=T(能够用来采药的时间))

但是注意了,如果执行不了状态转移方程,那么第二次就用

不了上一次的数据,所以,我们要加一句:

memcpy(f[i],f[i-1],sizeof(f[i]));

也就是把f[i-1]的值复制到f[i]里去。

———————————代码实现———————————


#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
    int t,v;//t表示采摘某i草药的时间,v表示这株草药的价值。
}a[1005];
int n,T,f[1005][1005];
int main()
{
    scanf("%d%d",&T,&n);
    for(int i=1;i<=n;i++)
        scanf("%d%d",&a[i].t,&a[i].v);
    for(int i=1;i<=n;i++)
    {
        memcpy(f[i],f[i-1],sizeof(f[i]));
        //如果进不了下一个循环,那么直接将这一次的值付给下一次
        for(int j=a[i].t;j<=T;j++)
            f[i][j]=max(f[i-1][j],f[i-1][j-a[i].t]+a[i].v);
    }
    printf("%d\n",f[n][T]);
    return 0;
}



********欢迎转载,但要在转载的第一行写上出处********
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值