1775:采药
-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
-
辰辰是个很有潜能、天资聪颖的孩子,他的梦想是称为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入
- 输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的的整数,分别表示采摘某株草药的时间和这株草药的价值。 输出
- 输出只包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。 样例输入
-
70 3 71 100 69 1 1 2
样例输出
-
3
来源
- NOIP 2005
这是OpenJudge上的一道原题,戳我查看
————————————分析————————————
这道题是典型的0-1背包问题。
所谓0-1背包,就是选或不选以达成最优解。
那么这道题的本意也就是:选在时间范围内尽量多的价值的
草药。
分析完后,我们就进入这个题。
我们可以定义一个结构体Node表示某株草药采取需要用的时
间和它的价值。定义一个二维的f数组表示采取前i株草药的
最优解。
因此,不难推出状态转移方程:
f[i][j]=max(f[i-1][j],f[i-1][j-a[i].t]+a[i].v);
(1<=i<=n)(a[i].t<=j<=T(能够用来采药的时间))
但是注意了,如果执行不了状态转移方程,那么第二次就用
不了上一次的数据,所以,我们要加一句:
memcpy(f[i],f[i-1],sizeof(f[i]));
也就是把f[i-1]的值复制到f[i]里去。
———————————代码实现———————————
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
int t,v;//t表示采摘某i草药的时间,v表示这株草药的价值。
}a[1005];
int n,T,f[1005][1005];
int main()
{
scanf("%d%d",&T,&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i].t,&a[i].v);
for(int i=1;i<=n;i++)
{
memcpy(f[i],f[i-1],sizeof(f[i]));
//如果进不了下一个循环,那么直接将这一次的值付给下一次
for(int j=a[i].t;j<=T;j++)
f[i][j]=max(f[i-1][j],f[i-1][j-a[i].t]+a[i].v);
}
printf("%d\n",f[n][T]);
return 0;
}
********欢迎转载,但要在转载的第一行写上出处********