CF960F Pathwalks

一、题目

点此看题

关于 l u o g u luogu luogu的题意我想做两点解释,避免异议:

  • 本题所指的最长的路径意思是经过边数最多的路径
  • 本题要求路径的中每一条的给出时间戳和边权严格递增

二、解法

即然要求给出时间戳递增,我们就考虑一条一条加边的时候顺便处理。

每个点我们都维护一个以边权 c c c结束的最多经过路径,每次加入一条边 ( u , v , c ) (u,v,c) (u,v,c)就在 v v v中查询以 [ 0 , c − 1 ] [0,c-1] [0,c1]结束的最大值,加 1 1 1就拼成了新的路径,更新答案即可。然后我们在 u u u c c c处插入这个最大值,你会发现整个过程可以用动态开点线段树来做,本题就解决了。

时间和空间复杂度都是 O ( n log ⁡ n ) O(n\log n) O(nlogn),贴个代码。

#include <cstdio>
#include <iostream>
using namespace std;
#define up 100000
const int M = 100005;
int read()
{
 int x=0,flag=1;char c;
 while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
 while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
 return x*flag;
}
int n,m,ans,cnt,rt[M],val[20*M],ls[20*M],rs[20*M];
void ins(int &i,int l,int r,int id,int x)
{
    if(!i) i=++cnt;
    val[i]=max(val[i],x);
    if(l==r) return ;
    int mid=(l+r)>>1;
    if(mid>=id)
        ins(ls[i],l,mid,id,x);
    else
        ins(rs[i],mid+1,r,id,x);
}
int ask(int i,int l,int r,int t)
{
    if(!i || l>t) return 0;
    if(r<=t) return val[i];
    int mid=(l+r)>>1;
    return max(ask(ls[i],l,mid,t),ask(rs[i],mid+1,r,t));
}
int main()
{
    n=read();m=read();
    for(int i=1;i<=m;i++)
    {
        int u=read(),v=read(),c=read();
        int t=ask(rt[u],0,up,c-1)+1;
        ans=max(ans,t);
        ins(rt[v],0,up,c,t);
    }
    printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值