一、题目
关于 l u o g u luogu luogu的题意我想做两点解释,避免异议:
- 本题所指的
最长的路径
意思是经过边数最多的路径 - 本题要求路径的中每一条的给出时间戳和边权严格递增
二、解法
即然要求给出时间戳递增,我们就考虑一条一条加边的时候顺便处理。
每个点我们都维护一个以边权 c c c结束的最多经过路径,每次加入一条边 ( u , v , c ) (u,v,c) (u,v,c)就在 v v v中查询以 [ 0 , c − 1 ] [0,c-1] [0,c−1]结束的最大值,加 1 1 1就拼成了新的路径,更新答案即可。然后我们在 u u u中 c c c处插入这个最大值,你会发现整个过程可以用动态开点线段树来做,本题就解决了。
时间和空间复杂度都是 O ( n log n ) O(n\log n) O(nlogn),贴个代码。
#include <cstdio>
#include <iostream>
using namespace std;
#define up 100000
const int M = 100005;
int read()
{
int x=0,flag=1;char c;
while((c=getchar())<'0' || c>'9') if(c=='-') flag=-1;
while(c>='0' && c<='9') x=(x<<3)+(x<<1)+(c^48),c=getchar();
return x*flag;
}
int n,m,ans,cnt,rt[M],val[20*M],ls[20*M],rs[20*M];
void ins(int &i,int l,int r,int id,int x)
{
if(!i) i=++cnt;
val[i]=max(val[i],x);
if(l==r) return ;
int mid=(l+r)>>1;
if(mid>=id)
ins(ls[i],l,mid,id,x);
else
ins(rs[i],mid+1,r,id,x);
}
int ask(int i,int l,int r,int t)
{
if(!i || l>t) return 0;
if(r<=t) return val[i];
int mid=(l+r)>>1;
return max(ask(ls[i],l,mid,t),ask(rs[i],mid+1,r,t));
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),c=read();
int t=ask(rt[u],0,up,c-1)+1;
ans=max(ans,t);
ins(rt[v],0,up,c,t);
}
printf("%d\n",ans);
}