[HDU 5909] Tree Cutting

12 篇文章 0 订阅
本文介绍了一种解决特定树形结构问题的算法——树形动态规划(Tree DP),并结合快速沃尔什-赫达曼变换(Fast Walsh-Hadamard Transform, FWT)进行优化,以高效地计算出所有子树的异或和权值分布。
摘要由CSDN通过智能技术生成

一、题目

点此看题

题目描述

给你一棵 n n n个节点的树,每个节点都有一个小于 m m m的权值,定义一棵子树的权值为所有节点的异或和,问权值为 0.. m − 1 0..m−1 0..m1的所有子树的个数。(这里子树的意思是联通子图)

二、解法

d p [ i ] [ j ] dp[i][j] dp[i][j]为第 i i i个点异或值为 j j j的方案数,枚举子节点,转移如下:
d p [ u ] [ k ] = ∑ i ⊕ j = k d p [ u ] [ i ] × d p [ v ] [ j ] dp[u][k]=\sum_{i\oplus j=k}dp[u][i]\times dp[v][j] dp[u][k]=ij=kdp[u][i]×dp[v][j]这显然是 fwt \text{fwt} fwt的形式,可以用 fwt \text{fwt} fwt优化,我们初始化把每个节点的权值那一位赋成 1 1 1,回溯时需要增加异或和 0 0 0的增加 1 1 1(父亲可以不选这个儿子),我们把每个点的 d p dp dp求和最后输出就行了(因为每个点的 d p dp dp值必然选了当前点而且只考虑子树)

#include <cstdio>
#include <cstring>
const int M = 1030;
const int MOD = 1e9+7;
int read()
{
    int num=0,flag=1;char c;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
    return num*flag;
}
int T,n,m,tot,f[M],dp[M][M],ans[M],inv2=(MOD+1)/2;
struct edge
{
	int v,next;
}e[2*M];
void fwt_xor(int *a,int n,int op)
{
	for(int i=1;i<n;i<<=1)
		for(int p=i<<1,j=0;j<n;j+=p)
			for(int k=0;k<i;k++)
			{
				int x=a[j+k],y=a[i+j+k];
				a[j+k]=(x+y)%MOD;
				a[i+j+k]=(x+MOD-y)%MOD;
				if(op==-1)
				{
					a[j+k]=1ll*a[j+k]*inv2%MOD;
					a[i+j+k]=1ll*a[i+j+k]*inv2%MOD;
				}
			}
}
void dfs(int u,int fa)
{
	fwt_xor(dp[u],m,1);
	for(int i=f[u];i;i=e[i].next)
	{
		int v=e[i].v;
		if(v==fa) continue;
		dfs(v,u);
		fwt_xor(dp[v],m,1);
		for(int j=0;j<m;j++)
			dp[u][j]=1ll*dp[u][j]*dp[v][j]%MOD;
	}
	fwt_xor(dp[u],m,-1);
	for(int i=0;i<m;i++)
		ans[i]=(ans[i]+dp[u][i])%MOD;
	dp[u][0]++;
}
signed main()
{
	T=read();
	while(T--)
	{
		memset(dp,0,sizeof dp);
		memset(ans,0,sizeof ans);
		n=read();m=read();
		for(int i=1;i<=n;i++)
		{
			tot=f[i]=0;
			dp[i][read()]=1;
		}
		for(int i=1;i<n;i++)
		{
			int u=read(),v=read();
			e[++tot]=edge{v,f[u]},f[u]=tot;
			e[++tot]=edge{u,f[v]},f[v]=tot;
		}
		dfs(1,0);
		printf("%d",ans[0]);
		for(int i=1;i<m;i++)
			printf(" %d",ans[i]);
		puts("");
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值