hdu5909Tree Cutting

链接:http://acm.hdu.edu.cn/showproblem.php?pid=5909

题意:给定一棵无根树,统计所有子树的异或和的个数。

分析:求出所有子树的异或和,题解的两种方法我都写了一下。第一种是FWT加速卷积O(n*m*logn)。第二种是树分治,因为是无根树,我们可以每次用树dp确定过重心的方案数,然后每次删掉重心就是树分治啦O(n*mlgon)。

fwt代码:

#include<map>
#include<set>
#include<stack>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef double db;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
const db eps=1e-5;
const int N=1e3+30;
const int M=1e5+10;
const ll MOD=1000000007;
const int mod=1000000007;
const int MAX=1000000010;
const double pi=acos(-1.0);
int n,m,w[N],tot,u[N],v[2*N],pre[2*N];
ll d[N],ans[N],dp[N][N];
void add(int a,int b) {
    v[tot]=b;pre[tot]=u[a];u[a]=tot++;
    v[tot]=a;pre[tot]=u[b];u[b]=tot++;
}
void fwt(ll a[],int n,ll inv) {
    int i,j,k,h;
    for (h=1;h<n;h<<=1)
        for (k=h<<1,i=0;i<n;i+=k)
            for (j=0;j<h;j++) {
                ll x=a[i+j],y=a[i+j+h];
                a[i+j]=(x+y)*inv%MOD;
                a[i+j+h]=(x-y)*inv%MOD;
            }
}
void dfs(int a,int b) {
    int i,j;
    dp[a][w[a]]=1;
    for (i=u[a];~i;i=pre[i])
    if (v[i]!=b) {
        dfs(v[i],a);
        for (j=0;j<m;j++) d[j]=dp[a][j];
        fwt(dp[a],m,1ll);fwt(dp[v[i]],m,1ll);
        for (j=0;j<m;j++) dp[a][j]=dp[a][j]*dp[v[i]][j]%MOD;
        fwt(dp[a],m,(MOD+1)/2);///fwt(dp[v[i]],m,(MOD+1)/2);
        for (j=0;j<m;j++) (dp[a][j]+=d[j])%=MOD;
    }
    for (j=0;j<m;j++) (ans[j]+=dp[a][j])%=MOD;
}
int main()
{
    int a,b,i,T;
    scanf("%d", &T);
    while (T--) {
        scanf("%d%d", &n, &m);
        for (i=1;i<=n;i++) scanf("%d", &w[i]);
        memset(ans,0,sizeof(ans));
        tot=0;memset(u,-1,sizeof(u));
        for (i=1;i<n;i++) scanf("%d%d", &a, &b),add(a,b);
        memset(dp,0,sizeof(dp));
        dfs(1,0);
        for (i=0;i<m-1;i++) printf("%lld ", ans[i]);
        printf("%lld\n", ans[m-1]);
    }
    return 0;
}

树分治代码:

#include<map>
#include<set>
#include<stack>
#include<cmath>
#include<queue>
#include<bitset>
#include<math.h>
#include<vector>
#include<string>
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef double db;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
const db eps=1e-5;
const int N=1e3+30;
const int M=1e5+10;
const ll MOD=1000000007;
const int mod=1000000007;
const int MAX=1000000010;
const double pi=acos(-1.0);
int n,m,w[N],tot,u[N],v[2*N],pre[2*N];
ll ans[N],dp[N][N];
void add(int a,int b) {
    v[tot]=b;pre[tot]=u[a];u[a]=tot++;
    v[tot]=a;pre[tot]=u[b];u[b]=tot++;
}
int sum,root,f[N],vis[N],siz[N];
void get_root(int a,int b) {
    f[a]=0;siz[a]=1;
    for (int i=u[a];~i;i=pre[i])
    if (v[i]!=b&&!vis[v[i]]) {
        get_root(v[i],a);
        siz[a]+=siz[v[i]];
        f[a]=max(f[a],siz[v[i]]);
    }
    f[a]=max(f[a],sum-siz[a]);
    if (f[a]<f[root]) root=a;
}
void get_ans(int a,int b) {
    int i,j;
    for (i=u[a];~i;i=pre[i])
    if (v[i]!=b&&!vis[v[i]]) {
        for (j=0;j<m;j++) dp[v[i]][j]=0;
        for (j=0;j<m;j++) (dp[v[i]][j^w[v[i]]]+=dp[a][j])%=MOD;
        get_ans(v[i],a);
        for (j=0;j<m;j++) (dp[a][j]+=dp[v[i]][j])%=MOD;
    }
}
void dfs_div(int a,int b) {
    for (int i=0;i<m;i++) dp[a][i]=0;
    dp[a][w[a]]=1;vis[a]=1;
    get_ans(a,b);
    for (int i=0;i<m;i++)
    (ans[i]+=dp[a][i])%=MOD;
    for (int i=u[a];~i;i=pre[i])
    if (v[i]!=b&&!vis[v[i]]) {
        root=0;sum=siz[v[i]];
        get_root(v[i],0);
        dfs_div(root,0);
    }
}
int main()
{
    int a,b,i,T;
    scanf("%d", &T);
    while (T--) {
        scanf("%d%d", &n, &m);
        for (i=1;i<=n;i++) scanf("%d", &w[i]);
        tot=0;memset(u,-1,sizeof(u));
        for (i=1;i<n;i++) scanf("%d%d", &a, &b),add(a,b);
        memset(vis,0,sizeof(vis));
        memset(ans,0,sizeof(ans));
        root=0;f[0]=sum=n;
        get_root(1,0);
        dfs_div(root,0);
        for (i=0;i<m-1;i++) printf("%lld ", ans[i]);
        printf("%lld\n", ans[m-1]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值