[POJ 3683]Priest Johns Busiest Day

本文深入探讨了2-SAT算法的原理及其在解决婚礼安排问题中的应用。通过建立图模型,文章详细解释了如何利用2-SAT算法确定婚礼是否可以在不发生时间冲突的情况下进行。关键步骤包括构建图、进行Tarjan强连通分量分析,以及检查是否存在矛盾的婚礼安排。文章还提供了完整的C++代码实现,帮助读者理解算法细节。
摘要由CSDN通过智能技术生成

一、题目

点此看题

二、解法

如果在开始时进行婚礼,那么就定义它为真,否则它为假。

如果两个人在开始时冲突,那么至少一个人需要选择在结束时,也就是 x ′ ∨ y ′ x'\vee y' xy,其他情况类推

然后 2-sat \text{2-sat} 2-sat,时间主要是建图,时间复杂度 O ( n 2 ) O(n^2) O(n2),坑点就是时间相等时是合法的。

#include <cstdio>
#include <iostream>
#include <stack>
using namespace std;
const int M = 2005;
int read()
{
    int num=0,flag=1;char c;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
    return num*flag;
}
int n,m,tot,Index,cnt,s[M],t[M],d[M];
int f[M],dfn[M],low[M],in[M],col[M];
stack<int> st;
struct edge
{
	int v,next;
}e[M*M];
void add(int u,int v)
{
	e[++tot]=edge{v,f[u]},f[u]=tot;
}
void tarjan(int u)
{
	in[u]=1;st.push(u);
	dfn[u]=low[u]=++Index;
	for(int i=f[u];i;i=e[i].next)
	{
		int v=e[i].v;
		if(!dfn[v])
			tarjan(v),low[u]=min(low[u],low[v]);
		else if(in[v])
			low[u]=min(low[u],dfn[v]);
	}
	if(low[u]==dfn[u])
	{
		int v=0;cnt++;
		do
		{
			v=st.top();st.pop();
			in[v]=0;col[v]=cnt;
		}while(v!=u);
	}
}
int check(int l1,int r1,int l2,int r2)
{
	return !(l1>=r2 || l2>=r1);
}
void work(int i,int j,int va,int vb)
{
	add(i+n*(va&1),j+n*(vb^1));
	add(j+n*(vb&1),i+n*(va^1));
}
signed main()
{
	n=read();
	for(int i=1;i<=n;i++)
	{
		int w,x,y,z;
		scanf("%d:%d %d:%d %d",&w,&x,&y,&z,&d[i]);
		s[i]=60*w+x;
		t[i]=60*y+z;
	}
	for(int i=1;i<=n;i++)
		for(int j=1;j<i;j++)
		{
			int va=0,vb=0;
			if(check(s[i],s[i]+d[i],s[j],s[j]+d[j]))
				work(i,j,0,0);
			if(check(s[i],s[i]+d[i],t[j]-d[j],t[j]))
				work(i,j,0,1);
			if(check(t[i]-d[i],t[i],s[j],s[j]+d[j]))
				work(i,j,1,0);
			if(check(t[i]-d[i],t[i],t[j]-d[j],t[j]))
				work(i,j,1,1);
		}
	for(int i=1;i<=2*n;i++)
		if(!dfn[i])
			tarjan(i);
	for(int i=1;i<=n;i++)
		if(col[i]==col[i+n])
		{
			puts("NO");
			return 0;
		}
	puts("YES");
	for(int i=1;i<=n;i++)
	{
		if(col[i]<col[i+n])
		{
			int h1=s[i]/60,r1=s[i]%60;
			s[i]+=d[i];
			int h2=s[i]/60,r2=s[i]%60;
			printf("%02d:%02d %02d:%02d\n",h1,r1,h2,r2);
		}
		else
		{
			int h1=t[i]/60,r1=t[i]%60;
			t[i]-=d[i];
			int h2=t[i]/60,r2=t[i]%60;
			printf("%02d:%02d %02d:%02d\n",h2,r2,h1,r1);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值