搜索引擎设计实用教程(2)-以百度为例


  拼写检查错误提示是搜索引擎都具备的一个功能,也就是说用户提交查询给搜索引擎,搜索引擎检查看是否用户输入的拼写有错误,对于中文用户来说一般造成的错误是输入法造成的错误.那么我们就来分析看看百度是怎么实现这一功能的.
  我们分析拼写检查系统关注以下几个问题:
  (1)系统如何判断用户的输入是有可能发生错误的查询呢?
  (2)如果判断是可能错误的查询输入,如何提示正确的词汇呢?
  
  那么百度是如何做的呢?百度判断用户输入是否错误的标准,我觉得应该是查字典,如果发现字典里面不包含这个词汇,那么很有可能是个错误的输入,此时启动错误提示功能,这个很好判断,因为如果是一个正常词汇的话,百度一般不会有错误提示,而你故意输入一个词典不可能包含的所谓词汇,此时百度一般会提示你正确的检索词汇.
  那么百度是怎么提示正确词汇的呢?很明显是通过拼音的方式,比如我输入查询” 制才”,百度提供的提示词汇为: “:制裁 质材 纸材”,都是同音字.所以百度必然维持着一个同音词词典,里面保留着同音词信息,比如可能包含着下面这条词条: “ zhi cai à制裁,质材,纸材”,另外还有一个标注拼音程序,现在能够看到的基本流程是: 用户输入” 制才”,查词典,发现没有这个词汇,OK,启动标注拼音程序,将” 制才”标注为拼音”zhi cai”,然后查找同音词词典,发现同音词” 制裁,质材,纸材”,那么提示用户可能的正确拼写.
  整体流程看起来很简单,但是还有一些遗留的小问题,比如是否将词表里面所有同音词都作为用户的提示信息呢?比如 某个拼音有10个同音词,是否都输出呢?百度并没有将所有同音词都输出而是选择一定筛选标准,选择其中几个输出.怎么证明这一点?我们看看拼音”liu li”的同音词,紫光输入法提示同音词汇有” 流丽 流离 琉璃 流利”4个,我们看看百度返回几个,输入”流厉”作为查询,这里是故意输入一个词典不包含的词汇,这样百度的拼写检查才开始工作,百度提示: "琉璃 刘丽 刘莉 ",这说明什么?说明不是所有同音词都输出,而是选择输出,那么选择的标准是什么?我能够猜测到的方法是对于用户查询LOG进行统计,提取用户查询次数多的那些同音词输出,如果是这样的话,上面的例子说明用户搜索”琉璃”次数比其它的都要高些,次之是” 刘丽”,再次是” 刘莉”,看来大家都喜欢查询自己或者认识的人的名字.
  另外一个小问题:同音词词典包含2字词,3字词,那么是否包含4字词以及更长的词条?是否包含一字词? 这里一字词好回答,不用测试也能知道肯定不包含,因为你输入一个字,谁知道是否是错误的呢?反正只要是汉字就能在词表里面找到,所以没有判断依据.二字词是包含的,上面有例子,三字词也包含,比如查询 "中城药"百度错误提示:”中成药”,修改查询为"重城药",还是提示”中成药” ,再次修改查询 "重城要",百度依然提示”中成药”. 那么4字词汇呢?
  百度还是会给你提示的,下面是个例子:
  输入:静华烟云 提示 京华烟云
  输入 静话烟云 提示 京华烟云
  输入 静话阎晕 提示 京华烟云
  那么更长的词汇是否提示呢?也提示,比如我输入: "落花世界有风军",这个查询是什么意思,估计读过古诗的都知道,看看百度的提示”落花时节又逢君”,这说明什么?说明同音词词典包含不同长度的同音词信息,另外也说明了百度的核心中文处理技术,也就是那个词典,还真挺大的.
  但是,如果用户输入的查询由两个或者两个以上子字符串构成,那么百度的错误提示功能就不工作了,比如输入查询"哀体",百度提示”艾提 挨踢”,但是.输入为 "我 哀体",则没有任何错误提示.
  还有一个比较重要的问题:如果汉字是多音字那么怎么处理?百度呢比较偷懒,它根本就没有对多音字做处理.我们来看看百度的一个标注拼音的错误,在看这个错误前先看看对于多音字百度是怎么提示错误的,我们输入查询"俱长",百度提示”剧场 局长”, “俱长”的拼音有两个:”ju zhang /ju chang” ,可见如果是多音字则几种情况都提示..现在我们来看看错误的情况, 我们输入查询”剧常”,百度提示”:剧场 局长”,提示为”剧场"当然好解释,因为是同音字,但是为什么 "局长"也会被提示呢?这说明百度的同音字词典有错误,说明在”ju chang”这个词条里面包含”局长”这个错误的同音词.让我们顺藤摸瓜,这个错误又说明什么问题呢?说明百度的同音词典是自动生成的,而且没有人工校对.还说明在自动生成同音词典的过程中,百度不是根据对一篇文章标注拼音然后在抽取词汇和对应的拼音信息获得的,而是完全按照某个词典的词条来标注音节的,所以对于多音字造成的错误无法识别出来,如果是对篇章进行拼音标注,可能就不会出现这种很容易发现的错误标注. 当然还有另外一种解释,就是"局长"是故意被百度提示出来可能的正确提示词汇,因为考虑到南方人"zh'和 "ch"等前后鼻音分不清么,那么是这样的么?我们继续测试到底是何种情况.是百度有错误还是这是百度的先进的算法?
  我们考虑词汇"长大",故意错误输入为"赃大",如果百度考虑到了前后鼻音的问题,那么应该会提示"长大",但是百度提示是"藏大".这说明什么?说明百度并没有考虑前后鼻音问题,根本就是系统错误. 我们输入查询"悬赏",故意将之错误输入为"悬桑",没有错误提示,说明确实没有考虑这种情况.前鼻音没有考虑,那么后鼻音考虑了么,我们输入”:经常”,故意改为后鼻音 "经缠",百度提示为"经产 经忏",还是没有考虑后鼻音.这基本可以确定是百度系统的错误导致.
  根据以上推导,我们可以得出如下结论:百度是将分词词典里面每个词条利用拼音标注程序标注成拼音,然后形成同音词词典,所以两个词典是同样大的,而且这个词典也随着分词词典的增长而在不断增长. 至于标注过程中多音字百度没有考虑,如果是多音字就标注成多个发音组合,通过这种方式形成同音词词典.这样的同音词词典显然包含着很多错误.
  最后一个问题:百度对于英文进行拼写检查么?让我们试试看,输入查询”china”,不错,搜到不少结果,专注中文搜索的百度还能搜索到英文,真是意外的惊喜.变换一下查询”chine”,会更加意外惊喜的给我们提示”china”吗?百度提示的是: 吃呢 持呢,原来是不小心触发了百度的拼音搜索功能了.那么拼音搜索和中文检查错误是否采用同一套同音词词典呢,让我们来实验一下,搜索”rongji”,百度提示” 榕基 溶剂 容积”,OK,换个中文查询”容机”,百度提示” 榕基 溶剂 容积”,看来使用的是同一套同音词词典.也就是说百度的中文纠错和拼音检索使用的机制相同,中文纠错多了一道拼音注音的过程而已.难道这就是传说中那个百度的”事实上是一个无比强大的拼音输入法”的拼音提示功能么?
  最后让我们总结归纳一下百度的拼写检查系统:
  后台作业: (1)前面的文章我们说过,百度分词使用的词典至少包含两个词典一个是普通词典,另外一个是专用词典(专名等),百度利用拼音标注程序依次扫描所有词典中的每个词条,然后标注拼音,如果是多音字则把多个音都标上,比如”长大”,会被标注为”zhang da/chang da”两个词条.
  (2)通过标注完的词条,建立同音词词典,比如上面的”长大”,会有两个词条: zhang daà长大” , chang daà长大.
  (3)利用用户查询LOG频率信息给予每个中文词条一个权重;
  (4)OK,同音词词典建立完成了,当然随着分词词典的逐步扩大,同音词词典也跟着同步扩大;
  
  拼写检查:
  (1)用户输入查询,如果是多个子字符串,不作拼写检查;
  (2)对于用户查询,先查分词词典,如果发现有这个单词词条,OK,不作拼写检查;
  (3)如果发现词典里面不包含用户查询,启动拼写检查系统;首先利用拼音标注程序对用户输入进行拼音标注;
  (4)对于标注好的拼音在同音词词典里面扫描,如果没有发现则不作任何提示;
  (5)如果发现有词条,则按照顺序输出权重比较大的几个提示结果;
  
  拼音提示:
  (1)对于用户输入的拼音在同音词词典里面扫描,如果没有发现则不作任何提示;
  (2)如果发现有词条,则按照顺序输出权重比较大的几个提示结果;

 

/*版权声明:可以任意转载,转载时请务必标明文章原始出处和作者信息 .*/

搜索引擎设计实用教程(2)-以百度为例
  之二:Spelling Checker拼写检查错误提示(以及拼音提示功能)
  
  中科院软件所 张俊林

  2005年11月

阅读更多

[百度分享]以求医为例谈搜索引擎排序算法的基础原理

08-08

文章来源:[url=http://stblog.baidu-tech.com/?p=121]http://stblog.baidu-tech.com/?p=121[/url]rn rnrn rnrnrn我们向搜索引擎提交一个查询,搜索引擎会从先到后列出大量的结果,这些结果排序的标准是什么呢?这个看似简单的问题,却是信息检索专家们研究的核心难题之一。rnrn  为了说明这个问题,我们来研究一个比搜索引擎更加古老的话题:求医。比如,如果我牙疼,应该去看怎样的医生呢?假设我只有三种选择:rnrnA医生,既治眼病,又治胃病; rnB医生,既治牙病,又治胃病,还治眼病; rnC医生,专治牙病。 rn  A医生肯定不在考虑之列。B医生和C医生之间,貌视更应该选择C医生,因为他更专注,更适合我的病情。假如再加一个条件:B医生经验丰富,有二十年从医经历,医术高明,而C医生只有五年从医经验,这个问题就不那么容易判断了,是优先选择更加专注的C医生,还是优先选择医术更加高明的B医生,的确成了一个需要仔细权衡的问题。rnrn  至少,我们得到了一个结论,择医需要考虑两个条件:医生的专长与病情的适配程度;医生的医术。大家肯定觉得这个结论理所当然,而且可以很自然地联想到,搜索引擎排序不也是这样吗,既要考虑网页内容与用户查询的匹配程度,又要考虑网页本身的质量。但是,怎么把这两种因素结合起来,得到一个,而不是两个或多个排序标准呢?假如我们把这两种因素表示成数值,最终的排序依据是把这两个数值加起来,还是乘起来,或是按决策树的办法把它们组织起来?如果是加起来,是简单相加,还是带权重加呢?rnrn  我们可以根据直觉和经验,通过试错的办法,把这两个因素结合起来。但更好的办法是我们能找到一个明确的依据,最好能跟数学这样坚实的学科联系起来。说起来,依据朴素的经验,人类在古代就能建造出高楼;但要建造出高达数百米的 摩天大厦,如果没有建筑力学、材料力学这样坚实的学科作为后盾,则是非常非常困难的。同理,依据朴素的经验构建的搜索引擎算法,用来处理上万的网页集合应该是没问题的;但要检索上亿的网页,则需要更为牢固的理论基础。rnrn  求医,病人会优先选择诊断准确、治疗效果好的医生;对于搜索引擎来说,一般按网页满足用户需求的概率从大到小排序。如果用q表示用户给出了一个特定的查询,用d表示一个特定的网页满足了用户的需求,那么排序的依据可以用一个条件概率来表示:rnrnP(d|q)rnrn这个简单的条件概率,将搜索引擎排序算法与概率论这门坚实的学科联系了起来,这就像在大海中航行的船只装备了指南针一样。利用贝叶斯公式,这个条件概率可以表示为:rn[align=center][img=http://hi.csdn.net/attachment/201108/8/0_13127710146a8C.gif][/img][/align]rn可以清楚地看到,搜索引擎的排序标准,是由三个部分组成的:查询本身的属性P(q);网页本身的属性P(d);两者的匹配关系P(q|d)。对于同一次查询来说,所有网页对应的P(q)都是一样的,因此排序时可以不考虑,即rnrn[align=center][img=http://hi.csdn.net/attachment/201108/8/0_1312771030yN91.gif][/img][/align]rn公式左边,是已知用户的查询,求网页满足该用户需求的概率。搜索引擎为了提高响应用户查询的性能,需要事先对所有待查询的网页做预处理。预处理时,只知道网页,不知道用户查询,因此需要倒过来计算,即分析每个网页能满足哪些需求,该网页分了多大比例来满足该需求,即得到公式右边的第一项P(q|d),这相当于上文介绍的医生的专门程度。比如,一个网页专门介绍牙病,另一个网页既介绍牙病又介绍胃病,那么对于“牙疼”这个查询来说,前一个网页的P(q|d)值就会更高一些。rnrn  公式右边的第二项P(d),是一个网页满足用户需求的概率,它反映了网页本身的好坏,与查询无关。假如要向一个陌生人推荐网页(我们并不知道他需要什么),那么P(d)就相当于某个特定的网页被推荐的概率。在传统的信息检索模型中,这一个量不太被重视,如传统的向量空间模型、BM25模型,都试图只根据查询与文档的匹配关系来得到排序的权重。而实际上,这个与查询无关的量是非常重要的。假如我们用网页被访问的频次来估计它满足用户需求的概率,可以看出对于两个不同的网页,这个量有着极其巨大的差异:有的网页每天只被访问一两次,而有的网页每天被访问成千上万次。能够提供如此巨大差异的量,竟长期被传统的搜索引擎忽略,直到Google发明了pagerank并让它参与到排序中。Pagerank是对P(d)值的一个不错的估计,这个因素的加入使搜索引擎的效果立即上升到了一个新的台阶。rnrn  这个公式同样回答了上文提出的问题,网页与查询的匹配程度,和网页本身的好坏,这两个因素应该怎样结合起来参与排序。这个公式以不可辩驳的理由告诉我们,如果网页与查询的匹配程度用P(q|d)来表示,网页本身的好坏用P(d)来表示,那么应该按它们的乘积来进行排序。在现代商业搜索引擎中,需要考虑更多更细节的排序因素,这些因素可能有成百上千个,要把它们融合起来是更加复杂和困难的问题。rnrnBy 相关性小组 jianglingrnrn

没有更多推荐了,返回首页