【题意】
给你两个多项式,请输出乘起来后的多项式。
【输入】
第一行两个整数 n 和 m,分别表示两个多项式的次数。1<=n,m<=10^5
第二行 n+1 个整数,分别表示第一个多项式的 0 到 n次项前的系数。
第三行 m+1 个整数,分别表示第一个多项式的 0 到 m 次项前的系数。
【输出】
一行 n+m+1 个整数,分别表示乘起来后的多项式的 0 到 n+m 次项前的系数。
【样例输入】
1 2
1 2
1 2 1
【样例输出】
1 4 5 2
最近学了一下FFT,关于FFT可以看这篇博客,我觉得FFT主要的思想就是分治,在折半引理以及一大堆东西(单位复数根,点值表达法,消去引理等)的支持下进行多项式分治,这里实现用的是迭代法,用递归的话比较慢且有巨大的常数,不过即使用迭代法常数也是很大的,慎用!
code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=100010;
const double pi=acos(-1.0);
struct complex
{
double r,i;
complex(){};
complex(double _r,double _i){r=_r;i=_i;}
friend complex operator + (const complex &x,const complex &y){return complex(x.r+y.r,x.i+y.i);}
friend complex operator - (const complex &x,const complex &y){return complex(x.r-y.r,x.i-y.i);}
friend complex operator * (const complex &x,const complex &y){return complex(x.r*y.r-x.i*y.i,x.r*y.i+x.i*y.r);}
}a[maxn*4],b[maxn*4];
int n,m;
int R[maxn*4];
void fft(complex *y,int len,int op)
{
for(int i=0;i<len;i++) if(i<R[i]) swap(y[i],y[R[i]]);
for(int i=1;i<len;i<<=1)
{
complex wn(cos(pi/i),sin(op*pi/i));
for(int j=0;j<len;j+=(i<<1))
{
complex w(1,0);
for(int k=0;k<i;k++,w=w*wn)
{
complex u=y[j+k];
complex v=w*y[j+k+i];
y[j+k]=u+v;
y[j+k+i]=u-v;
}
}
}
if(op==-1) for(int i=0;i<len;i++) y[i].r/=len;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].r);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].r);
int L=0;
m+=n; int len=1;
while(len<=m)
{
L++;
len*=2;
}
for(int i=0;i<len;i++) R[i]=(R[i>>1]>>1)|(i&1)<<(L-1);
fft(a,len,1);
fft(b,len,1);
for(int i=0;i<=len;i++) a[i]=a[i]*b[i];
fft(a,len,-1);
for(int i=0;i<=m;i++) printf("%d ",(int)(a[i].r+0.5));
return 0;
}