[hdu4609]3-idiots(快速傅利叶变换FFT)

6 篇文章 0 订阅

题目名字是三个制杖…

【题意】
有T组数据
每组数据给出n条线段,问任意取三条,可以组成三角形的概率

【输入】
开头一行输入T(T<=10)
下来T组数据,每组数据第一行输入一个n(3<=n<=10^5)
第二行输入n个数,表示n条线段
线段长度(1<=n<=10^5)

【输出】
每组数据输出一个数p
表示可以组成三角形的概率
保留七位小数

【样例输入】
2
4
1 3 3 4
4
2 3 3 4

【样例输出】
0.5000000
1.0000000

这题和这道题构造多项式的大体思路差不多,而且都需要利用容斥的思想,如果不懂这道题的容斥的话可以去看一下我之前这道题的题解。
那么我们就讲一下容斥好了。
把q[]排序(q是边长)FFT过后,用一个num[]数组记下多项式的系数(也就是方案数啦),然后和前面那道题一样用num[q[i]*2]-=1来去掉重复拿两个的方案,用num[i]/=2去掉选择的顺序不同但选择的东西一样的方案。 做完这些之后用剩下的num数组求一个前缀和sum[]那么sum[i]记录的就是两边之和小于q[i]的方案个数,那么sum[len]-sum[q[i]]就是两边之和大于q[i]的方案个数,但是这里面也有不合法的情况,设其他两条边是a,b那么:

1a=q[i]b=q[i](n1)
2a>q[i]b<q[i](n1i)i
3a>q[i]b>q[i](n1i)(n2i)2

(注意我是从0开始的)
证明大家自己去想一下吧,很简单的

因为卷积很大所以这题要开long long,注意一定要控制好int和longlong的转换,要不然会出现负数整题爆0(哭唧唧….

code:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
using namespace std;
typedef long long LL;
const int maxn=210000;
const double pi=acos(-1.0);
struct complex
{
    double r,i;
    complex(){}
    complex(double _r,double _i){r=_r,i=_i;}
    friend complex operator + (const complex &x,const complex &y){return complex(x.r+y.r,x.i+y.i);}
    friend complex operator - (const complex &x,const complex &y){return complex(x.r-y.r,x.i-y.i);}
    friend complex operator * (const complex &x,const complex &y){return complex(x.r*y.r-x.i*y.i,x.r*y.i+x.i*y.r);}
}a[maxn*4];
int R[maxn*4];
void fft(complex *y,int len,int on)
{
    for(int i=0;i<len;i++)if(i<R[i])swap(y[i],y[R[i]]);
    for(int i=1;i<len;i<<=1) 
    {
        complex wn(cos(pi/i),sin(on*pi/i)); 
        for(int j=0;j<len;j+=(i<<1)) 
        {
            complex w(1,0);
            for(int k=0;k<i;k++,w=w*wn) 
            {
                complex u=y[j+k]; 
                complex v=w*y[j+k+i];
                y[j+k]=u+v;
                y[j+k+i]=u-v;
            }
        }
    }
    if(on==-1)for(int i=0;i<len;i++)y[i].r/=len; 
}
LL num[maxn],sum[maxn];
int q[maxn];
int main()
{
    int T;scanf("%d",&T);
    while(T--){
        int n;scanf("%d",&n);
        memset(num,0,sizeof(num));
        for(int i=0;i<n;i++)
        {
            scanf("%d",&q[i]);
            num[q[i]]++;
        }
        sort(q,q+n);

        int L=0,m=(int)q[n-1]+1,len;
        for(len=1;len<=m*2;len*=2) L++;
        for(int i=0;i<m;i++) a[i]=complex(num[i],0);//memset
        for(int i=m;i<len;i++) a[i]=complex(0,0);
        for(int i=0;i<len;i++) R[i]=(R[i>>1]>>1)|(i&1)<<(L-1);
        fft(a,len,1);
        for(int i=0;i<len;i++) a[i]=a[i]*a[i];
        fft(a,len,-1);
        for(int i=0;i<len;i++) num[i]=(LL)(a[i].r+0.5);

        len=2*q[n-1];
        for(int i=0;i<n;i++) num[q[i]*2]--;//取两个相同
        for(int i=1;i<=len;i++) num[i]/=2;//选择的无序

        sum[0]=0; for(int i=1;i<=len;i++) sum[i]=sum[i-1]+num[i];
        LL cnt=0;
        for(int i=0;i<n;i++)
        {
            cnt+=sum[len]-sum[q[i]];
            cnt-=(n-1); //x2=a[i] 或者 x1=a[i]
            cnt-=(LL)(n-i-1)*i; //x2>a[i],x1<a[i]
            cnt-=(LL)(n-i-1)*(n-i-2)/2; //x2>a[i],x1>a[i] 
        }
        LL tot=(LL)(n)*(n-1)*(n-2)/6;
        printf("%.7lf\n",(double)cnt/tot);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值