20、安全云爆发的参考设计解析

安全云爆发的参考设计解析

1. 安全云爆发概述

安全云爆发涉及多个关键方面,能实现企业用户工作负载应用向英特尔TXT认证的安全资源扩展,并防止应用负载使用不符合NIST 7904草案推荐场景的资源。其主要功能如下:
- 基于信任的安全迁移 :为云可信资源池和相关计算节点提供地理位置测量和实施(地理围栏)。
- 工作负载实例化和配置 :在可信资源池中运行工作负载。
- 动态工作负载迁移和基于API的实施 :在地理位置内和跨地理位置的可信资源池之间移动工作负载。
- 实时测量的可见性和透明度 :支持治理、风险和合规性要求的工作负载报告和审计。
- 部署安全虚拟化基础设施的最佳实践 :遵循行业建议。

2. 云爆发参考架构

2.1 架构组成

云爆发解决方案架构涉及两个主要站点:
- 站点1(客户站点) :代表IT组织的主要私有云,运行Virtustream xStream云管理软件,管理运行VMware ESXi的服务器资源池。有基于英特尔TXT的安全敏感工作负载资源池和非TXT的常规工作负载资源池。
- 站点2(云服务提供商) :在公共云环境中具有类似设置,私有云(站点1)的工作负载可扩展到站点2的资源集群。xStream云管理软件无缝联合身份、控制和配置资源及工作负载部署,可从组织的xStream管理门户进行全面控制、监控和管

内容概要:本文详细介绍了一个基于Java和Vue的迁移学习与少样本图像分类系统的设计与实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习与少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控与自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI界面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练与推理平台;③学习如何将Python深度学习模型与Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例与流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值