1592 国王

1592 国王

练习状压DP…
求使它们无法互相攻击的方案总数,动态规划,其实和dfs有点像,类似于n皇后问题
n<=10,数据范围真的是可以了,但是深搜的话,时间复杂度会指数爆炸一样,不要想了
因为对于每一个格子都有放或者不放两种情况,那么就可以用二进制来来优化
那么一行的数据就浓缩成一个数了
怎么设计状态?
我们要在n×n的棋盘放k个国王,那么就用f[i][j][k]表示第i行状态是a[j],目前放了k个棋子
f[i][j][k]=sum{ i-1,l,k-num[j] }其中l枚举上一行状态的变量,num[j]是a[j]是这个状态可以放置国王数

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
using namespace std;//那么这道题就转化为从0-13的二进制数中找出有三个1的数有几
typedef long long ll;
ll n,k;
ll num[1000];//记录国王的数量
ll a[1000]; 
ll f[300][300][300];
ll ans;
ll sum;
void sol()//计算状态压缩 
{
	int cnt=0;
	for(int i=0;i<(1<<n);i++)//枚举每一行的状态
	{
		if( i&(i<<1) ) continue;//结果非0会有1挨着,不合法
		cnt=0;
		for(int j=0;j<n;j++) if((1<<j)&i) cnt++;//记录1的位置
		a[++sum]=i; //记录状态 
		num[sum]=cnt;//国王数量 
	 } 
}
void dp()
{
	f[0][1][0]=1;//第0行第一位上可以放一个国王
	for(int i=1;i<=n;i++)
		for(int j=1;j<=sum;j++)//枚举国王 
			for(int kk=0;kk<=k;kk++)
			{
				if(kk>=num[j])
					for(int l=1;l<=sum;l++)
						if(!(a[l]&a[j]) && !(a[l]&(a[j]<<1)) && !(a[l]&(a[j]>>1)))//判断冲突
							f[i][j][kk]+=f[i-1][l][kk-num[j]]; //放置 
			}
	for(int i=1;i<=sum;i++) ans+=f[n][i][k];
	cout<<ans<<endl;
} 
int main()
{
	cin>>n>>k;
	sol();
	dp();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值