题目大致意思是有一个L形的棋子,可以有四种摆放方式,在一个2Xlength的棋盘上有些地方不能摆放棋子,有些地方可以,问最多可以摆多少个这样的L形棋子。
通过画图我们可以知道,一个2x2的方形棋盘上,只要有3个可以摆放的位置,那么就可以放下一个L形棋子,而两个L形棋子可能拼在一个占三列,我们先选取状态 dp[i] 表示第 i 列的时候棋盘上最多可以摆放的个数,那么可以建立状态转移方程
dp[i] = dp[i-1] + 第i列与第i-1列中能放下的L棋子的个数
那么通过之前提到的2x2棋盘判断可行的方法,可以O(length) 的时间复杂度内计算出最后的答案,dp[len-1]
代码如下
#include <bits/stdc++.h>
using namespace std;
char idx[2][1000];
int dp[1000];
int main(){
int k = 0;
scanf("%s%s",idx[0],idx[1]);
long long len = strlen(idx[1]);
if (idx[0][0] == '0') k++;
if (idx[1][0] == '0') k++;
for (int i=1; i<len; i++) {
int t = k;
if (idx[0][i] == '0') k++;
if (idx[1][i] == '0') k++;
if (k >= 3) {
dp[i] = dp[i-1] + 1;
k -= 3;
}else{
dp[i] = dp[i-1];
k -= t;
}
}
cout << dp[len-1] << endl;
return 0;
}