1. 激光的分类和特点
1.1 特点
优点
- 可以直接获得深度信息
- 不受环境光照影响,比较稳定
缺点
- 稀疏性
- 几何信息区分度小
2D 激光点少,大概几千个点。
3D 激光信息量多,跟图像有很多类似性,但是激光的稀疏性明显,上下和左右相差比较大。左右可是是零点几度,上下就是64根线,或者128根线,所以提取特征不能像图像那样提取,还有一个顺序性,比如40帧数据,从左到右或者从右到左都是等实的。
SLAM研究历史
ekf特征定位(二维)
- 主要形式为角点、线。
一般要配以里程计、imu,或者运动模型来提供运动预测算法以ekf、粒子滤波等模型形式。 - 点或特征的ICP(二维)
里程计推导用直接的ICP替代了之前的ekf过程
定位使用粒子滤波的方式
最优代表性的是gmapping - 三维解决方式
数据量大了很多,去掉一些点
点抽样-> ICP
特征 (点、线、面)-> ekf icp
NDT
LOAM
特征匹配
- 在扫描 P k + 1 P_{k+1} Pk+1中提取线特征 ε k + 1 \varepsilon_{k+1} εk+1和面特征 H k + 1 H_{k+1} Hk+1并转换到k+1坐标下
- 扫描 P k + 1 P_{k+1} Pk+1投影到k+1坐标下
- 找对应的特征的当前扫描和临近扫描的对应点(KD-tree)
特征筛选
- 控制数量,区域划分,每个区域只许一条线和一个点
- 去除歧义点
特征关联
- 评价特征点到线和面的距离
- 距离评价函数
d ε = X ~ ( k + 1 , j ) L − X ‾ ( k , j ) L ∗ X ~ ( k + 1 , j ) L − X ‾ ( k , l ) L ∣ X ‾ ( k , j ) − X ‾ ( k , l ) ∣ d_{\varepsilon}=\frac{\widetilde{X}_{(k+1,j)}^{L}-\overline{X}_{(k,j)}^{L}*\widetilde{X}_{(k+1,j)}^{L}-\overline{X}_{(k,l)}^{L}}{|\overline{X}_{(k,j)}-\overline{X}_{(k,l)}|} dε=∣X(k,j)−X(k,l)∣X (k+1,j)L−X(k,j)L∗X (k+1,j)L−X(k,l)L
这个当前扫描的角点到之前扫描的线的距离
运动估计
线性化顺序点位置预估:
T
(
k
+
1
,
i
)
L
=
t
i
−
t
k
+
1
t
−
t
k
+
1
T
k
+
1
L
T^{L}_{(k+1,i)}=\frac{t_i-t_{k+1}}{t-t_{k+1}}T_{k+1}^L
T(k+1,i)L=t−tk+1ti−tk+1Tk+1L
旋转角表示:
R
=
e
w
^
θ
=
I
+
w
^
sin
θ
+
w
^
2
(
1
−
cos
θ
)
R = e^{\hat{w}\theta}=I + \hat{w}\sin\theta + \hat{w}^2(1-\cos\theta)
R=ew^θ=I+w^sinθ+w^2(1−cosθ)
根据上面的评价函数迭代求解。
根据距离加入信任因子或者直接剔除。
###Mapping
- 方法类似与里程计,但是对象由近邻扫描替换成已有的地图电云
- 特征保留较多(10 times)
- 类似与NDT,对于临近点云进行PCA分析,平面的参数由统计数代替原始点
- Mapping 过程相当于一个更高精度的VO
LOAM
- 室内效果好于室外
- 可以提高非线性运动的效果
讨论
- 基本思想还是二维的线面特征迭代的思想,还是可行的。
- 点面特征还不够可靠,后续发展为结合视觉的v-loam
- 对数据统计分类,通过统计数据代替原始数据,无论从速度还是精度上都是比较有利的
- 根据激光数据的稀疏性,近阶段的处理方式获得很大的认同,里程计效果好。
- 激光数据分割、识别可能是个大问题,关系到loop,定位等问题
- 觉得有orbslam的影子,track和mapping分离