再谈激光SLAM

1. 激光的分类和特点

1.1 特点

优点

  • 可以直接获得深度信息
  • 不受环境光照影响,比较稳定

缺点

  • 稀疏性
  • 几何信息区分度小

2D 激光点少,大概几千个点。
3D 激光信息量多,跟图像有很多类似性,但是激光的稀疏性明显,上下和左右相差比较大。左右可是是零点几度,上下就是64根线,或者128根线,所以提取特征不能像图像那样提取,还有一个顺序性,比如40帧数据,从左到右或者从右到左都是等实的。

SLAM研究历史

ekf特征定位(二维)

  • 主要形式为角点、线。
    一般要配以里程计、imu,或者运动模型来提供运动预测算法以ekf、粒子滤波等模型形式。
  • 点或特征的ICP(二维)
    里程计推导用直接的ICP替代了之前的ekf过程
    定位使用粒子滤波的方式
    最优代表性的是gmapping
  • 三维解决方式
    数据量大了很多,去掉一些点
    点抽样-> ICP
    特征 (点、线、面)-> ekf icp
    NDT

LOAM

特征匹配

  1. 在扫描 P k + 1 P_{k+1} Pk+1中提取线特征 ε k + 1 \varepsilon_{k+1} εk+1和面特征 H k + 1 H_{k+1} Hk+1并转换到k+1坐标下
  2. 扫描 P k + 1 P_{k+1} Pk+1投影到k+1坐标下
  3. 找对应的特征的当前扫描和临近扫描的对应点(KD-tree)

特征筛选

  1. 控制数量,区域划分,每个区域只许一条线和一个点
  2. 去除歧义点

特征关联

  1. 评价特征点到线和面的距离
  2. 距离评价函数
    d ε = X ~ ( k + 1 , j ) L − X ‾ ( k , j ) L ∗ X ~ ( k + 1 , j ) L − X ‾ ( k , l ) L ∣ X ‾ ( k , j ) − X ‾ ( k , l ) ∣ d_{\varepsilon}=\frac{\widetilde{X}_{(k+1,j)}^{L}-\overline{X}_{(k,j)}^{L}*\widetilde{X}_{(k+1,j)}^{L}-\overline{X}_{(k,l)}^{L}}{|\overline{X}_{(k,j)}-\overline{X}_{(k,l)}|} dε=X(k,j)X(k,l)X (k+1,j)LX(k,j)LX (k+1,j)LX(k,l)L

这个当前扫描的角点到之前扫描的线的距离

运动估计

线性化顺序点位置预估: T ( k + 1 , i ) L = t i − t k + 1 t − t k + 1 T k + 1 L T^{L}_{(k+1,i)}=\frac{t_i-t_{k+1}}{t-t_{k+1}}T_{k+1}^L T(k+1,i)L=ttk+1titk+1Tk+1L
旋转角表示: R = e w ^ θ = I + w ^ sin ⁡ θ + w ^ 2 ( 1 − cos ⁡ θ ) R = e^{\hat{w}\theta}=I + \hat{w}\sin\theta + \hat{w}^2(1-\cos\theta) R=ew^θ=I+w^sinθ+w^2(1cosθ)
根据上面的评价函数迭代求解。
根据距离加入信任因子或者直接剔除。
###Mapping

  1. 方法类似与里程计,但是对象由近邻扫描替换成已有的地图电云
  2. 特征保留较多(10 times)
  3. 类似与NDT,对于临近点云进行PCA分析,平面的参数由统计数代替原始点
  4. Mapping 过程相当于一个更高精度的VO

LOAM

  • 室内效果好于室外
  • 可以提高非线性运动的效果

讨论

  1. 基本思想还是二维的线面特征迭代的思想,还是可行的。
  2. 点面特征还不够可靠,后续发展为结合视觉的v-loam
  3. 对数据统计分类,通过统计数据代替原始数据,无论从速度还是精度上都是比较有利的
  4. 根据激光数据的稀疏性,近阶段的处理方式获得很大的认同,里程计效果好。
  5. 激光数据分割、识别可能是个大问题,关系到loop,定位等问题
  6. 觉得有orbslam的影子,track和mapping分离
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值