LeetCode题目89:格雷码 递归、迭代及位操作在数组合并中的应用

本文介绍了如何通过递归公式、二进制法、迭代法、镜像反射以及位操作优化等方法生成格雷码序列,讨论了每种方法的时间和空间复杂度,并展示了格雷码在数字逻辑设计、位置编码和数据压缩等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
python源码解读
程序员必备的数学知识与应用
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

格雷码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。

给定一个代表编码总位数的非负整数 n,打印其格雷码序列的顺序。格雷码序列必须以 0 开头。

输入格式
  • n:编码的位数。
输出格式
  • 返回格雷码序列的列表。

示例

示例 1
输入: n = 2
输出: [0, 1, 3, 2]
解释:
00 - 0
01 - 1
11 - 3
10 - 2

方法一:递归公式法

解题步骤
  1. 递归定义:利用格雷码的递归性质,G(n) = [0G(n-1), 1G(n-1)_reverse],即先加上 n-1 的格雷码序列,然后加上 n-1 的格雷码序列反转并在最高位加 1。
  2. 基本情况:当 n = 0 时,返回 [0]
完整的规范代码
def grayCode(n):
    """
    根据递归公式生成格雷码
    :param n: int, 编码的位数
    :return: List[int], 格雷码序列
    """
    if n == 0:
        return [0]
    # 递归生成前一位的格雷码
    previous = grayCode(n - 1)
    max_number = 1 << (n - 1)
    return previous + [max_number + i for i in reversed(previous)]

# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),生成长度为 (2^n) 的格雷码序列。
  • 空间复杂度:(O(2^n)),递归栈的深度和输出结果的长度。

方法二:二进制法

解题步骤
  1. 二进制转换:格雷码可以通过 G(i) = i ^ (i >> 1) 来从二进制转换得到,对于每个数 i,从 02^n - 1,计算对应的格雷码。
完整的规范代码
def grayCode(n):
    """
    使用二进制转换法生成格雷码
    :param n: int, 编码的位数
    :return: List[int], 格雷码序列
    """
    return [i ^ (i >> 1) for i in range(1 << n)]

# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),一次遍历生成格雷码序列。
  • 空间复杂度:(O(2^n)),存储格雷码序列。

方法三:迭代法

解题步骤
  1. 迭代构建:从 n=0 开始,迭代构建到 n,每次迭代利用上一次的结果。
  2. 反向追加:每次迭代在前一次结果的基础上,反向追加加上高位 1 的结果。
完整的规范代码
def grayCode(n):
    """
    迭代法生成格雷码
    :param n: int, 编码的位数
    :return: List[int], 格雷码序列
    """
    result = [0]
    for i in range(n):
        result += [x + (1 << i) for x in reversed(result)]
    return result

# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),每次迭代都会将结果列表长度翻倍。
  • 空间复杂度:(O(2^n)),存储格雷码序列。

方法四:镜像反射法

解题步骤
  1. 镜像原理:格雷码可以通过镜像反射的方式构建。首先生成长度为 1 的序列 [0, 1],每次迭代时,对当前列表进行镜像反射,左半部分的数字前加 0,右半部分的数字前加 1
  2. 递增迭代:从 1 位开始,通过递增方式逐步扩展到 n 位格雷码。
完整的规范代码
def grayCode(n):
    """
    镜像反射法生成格雷码
    :param n: int, 编码的位数
    :return: List[int], 格雷码序列
    """
    result = [0, 1]
    for i in range(1, n):
        result += [x + (1 << i) for x in reversed(result)]
    return result

# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),每次迭代列表长度翻倍,需要 (n) 次迭代来完成。
  • 空间复杂度:(O(2^n)),需要存储整个格雷码序列。

方法五:位操作优化

解题步骤
  1. 位操作:利用位操作的特性直接生成格雷码序列。格雷码的生成可以看作是一种位操作,通过对数值进行异或操作实现。
  2. 一次计算:通过从 02^n - 1 的循环,直接计算每个值的格雷码表示。
完整的规范代码
def grayCode(n):
    """
    位操作优化生成格雷码
    :param n: int, 编码的位数
    :return: List[int], 格雷码序列
    """
    return [(i >> 1) ^ i for i in range(1 << n)]

# 示例调用
print(grayCode(2))  # 输出: [0, 1, 3, 2]
算法分析
  • 时间复杂度:(O(2^n)),对于给定的位数 n,生成所有可能的 2^n 个格雷码。
  • 空间复杂度:(O(2^n)),用于存储生成的格雷码序列。

不同算法的优劣势对比

特征方法一:递归公式法方法二:二进制法方法三:迭代法方法四:镜像反射法方法五:位操作优化
时间复杂度(O(2^n))(O(2^n))(O(2^n))(O(2^n))(O(2^n))
空间复杂度(O(2^n))(O(2^n))(O(2^n))(O(2^n))(O(2^n))
优势直观、递归简洁直接、无需递归易于理解和实现直观且易于理解极快且简洁
劣势深度递归可能导致栈溢出理解稍难需要多次复制和追加需要初始化较长列表位操作可能不直观

应用示例

格雷码的应用非常广泛,特别是在数字系统和通信领域,如:

  • 数字逻辑设计:在数字逻辑和硬件设计中,格雷码被用来最小化信号在数字电路中的切换错误。
  • 位置编码:在旋转编码器和其他传感器中,格雷码用于确保位置信息在读取过程中的准确性,减少错误。
  • 数据压缩:在某些形式的数据压缩中,格雷码有助于更有效地编码信息。
实验二 递归算法设计与应用 一. 实验目的和要求 1. 加深对递归算法的理解,并针对具体问题设计算法; 2. 分析算法的复杂性,寻找比较高效的算法,并实现。 3. 分析格雷码问题,并设计递归算法求解之。 二. 基本原理 递归是一种重要的程序设计方法。使用递归方法有时可使算法简洁明了,易于设计。 递归算法自己调用自己, 有直接递归与间接递归两种。 递归方法用于解决一类满足递归关系的问题。即:对原问题的求解可转化为对其性质相同的子问题的求解。 三. 该类算法设计与实现的要点 1. 递归关系(特性):产生递归的基础。 当算法中某步骤要通过解性质相同的子问题实现时,该步骤用递归调用实现。 2. 递归出口(结束条件):确定递归的层数。 当子问题的规模充分小时可直接求解时,递归结束。 3. 参数设置:参数表示了原问题及其不同的子问题。 参数表示了子问题的大小和状态,以区别原问题以及不同层次的子问题。 4. 算法功能的设定:严格规定递归算法要解决什么样的问题。 算法功能的正确设定是保证递归过程正确进行的前提。 四. 实验内容――格雷码问题 1.问题描述 对于给定的正整数n,格雷码为满足如下条件的一个编码序列: (1) 序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2) 序列中无相同的编码。 (3) 序列中位置相邻的两个编码恰有一位不同。 例如:n=2时的格雷码为:{00, 01, 11, 10}。 设计求格雷码递归算法并实现。 2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1769题 输入:输入的第一行是一个正整数m,表示测试例个数。接下来几行是m个测试例的数据,每个测试例的数据由一个正整数n组成。 输出:对于每个测试例n,输出2n个长度为n的格雷码。(为方便查看,在每个格雷码内,两个位之间用一个空格隔开,如,00输出为:0 0)。两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。 3. 测试数据 输入:2 4 5 输出:0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 4. 设计与实现的提示 长度为n的格雷码是由长度为n-1的格雷码变换而成的。 可以用数组或字符串来存储格雷码。注意:对于较大的正整数n,用数组存储容易引起死机。 按照定义2n个长度为n的格雷码序列是不唯一的,若在ACM平台上提交程序,要求输出的编码序列与给出的范例具有相同的规律。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据分析螺丝钉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值