二项式反演学习笔记

形式一

对于任意正整数 n n n,若
f ( n ) = ∑ i = 0 n ( − 1 ) i C n i g ( i ) f(n)=\displaystyle \sum_{i=0}^n (-1)^iC_{n}^ig(i) f(n)=i=0n(1)iCnig(i)


g ( n ) = ∑ i = 0 n ( − 1 ) i C n i f ( i ) g(n)=\displaystyle \sum_{i=0}^n (-1)^iC_{n}^if(i) g(n)=i=0n(1)iCnif(i)

证明

代入结论演绎原式可以得到:
g ( n ) = ∑ i = 0 n ( − 1 ) i C n i ∑ j = 0 i ( − 1 ) j C i j g ( j ) g(n)=\displaystyle \sum_{i=0}^n (-1)^iC_{n}^i\displaystyle \sum_{j=0}^i (-1)^jC_{i}^jg(j) g(n)=i=0n(1)iCnij=0i(1)jCijg(j)

我们将 g ( j ) g(j) g(j) ( − 1 ) j (-1)^j (1)j 提到前面:
g ( n ) = ∑ j = 0 n ( − 1 ) j g ( j ) ∑ i = j n ( − 1 ) i C n i C i j g(n)=\displaystyle \sum_{j=0}^n(-1)^jg(j)\displaystyle \sum_{i=j}^n(-1)^iC_n^iC_i^j g(n)=j=0n(1)jg(j)i=jn(1)iCniCij

其中 C n i C i j C_n^iC_i^j CniCij 可以化为 C n j C n − j i − j C_n^jC_{n-j}^{i-j} CnjCnjij,并把 C n j C_n^j Cnj 提取到前面, C n − j i − j C_{n-j}^{i-j} Cnjij留在第二个和式内;再来考虑 ( − 1 ) i (-1)^i (1)i ( − 1 ) j (-1)^j (1)j 的乘积,由于我们只关心指数的奇偶性,那么合并成 ( − 1 ) i + j (-1)^{i+j} (1)i+j ( − 1 ) i − j (-1)^{i-j} (1)ij 都是可行的,在这里我选择合并成 ( − 1 ) i − j (-1)^{i-j} (1)ij,最后运用二项式定理(中间过程为了便于运用二项式定理,令 t = i − j t=i-j t=ij),那么可以得到:
g ( n ) = ∑ j = 0 n C n j g ( j ) ∑ i = j n ( − 1 ) i − j C n − j i − j = ∑ j = 0 n C n j g ( j ) ∑ t = 0 n − j ( − 1 ) t C n − j t = ∑ j = 0 n C n j g ( j ) ∑ t = 0 n − j ( − 1 ) t C n − j t ∗ 1 n − j − t = ∑ j = 0 n C n j g ( j ) ∗ ( 1 − 1 ) n − j \begin{align*} g(n) = &\displaystyle \sum_{j=0}^nC_n^jg(j)\displaystyle \sum_{i=j}^n(-1)^{i-j}C_{n-j}^{i-j}\\ = &\displaystyle \sum_{j=0}^nC_n^jg(j)\displaystyle \sum_{t=0}^{n-j}(-1)^{t}C_{n-j}^{t}\\ = &\displaystyle \sum_{j=0}^nC_n^jg(j)\displaystyle \sum_{t=0}^{n-j}(-1)^{t}C_{n-j}^{t}*1^{n-j-t}\\ = &\displaystyle \sum_{j=0}^nC_n^jg(j)*(1-1)^{n-j} \end{align*} g(n)====j=0nCnjg(j)i=jn(1)ijCnjijj=0nCnjg(j)t=0nj(1)tCnjtj=0nCnjg(j)t=0nj(1)tCnjt1njtj=0nCnjg(j)(11)nj

由于 ( 1 − 1 ) x = [ x = 0 ] (1-1)^x=[x=0] (11)x=[x=0],因此当且仅当 j = n j=n j=n 时,第一个和式才有贡献,即:
g ( n ) = C n n g ( n ) = g ( n ) g(n)=C_n^ng(n)=g(n) g(n)=Cnng(n)=g(n)

得证.

形式二

对于任意正整数 n n n,若
f ( n ) = ∑ i = 0 n C n i g ( i ) f(n)=\displaystyle \sum_{i=0}^nC_n^ig(i) f(n)=i=0nCnig(i)


g ( n ) = ∑ i = 0 n ( − 1 ) n − i C n i f ( i ) g(n)=\displaystyle \sum_{i=0}^n(-1)^{n-i}C_n^if(i) g(n)=i=0n(1)niCnif(i)

证明
h ( i ) = ( − 1 ) i g ( i ) h(i)=(-1)^ig(i) h(i)=(1)ig(i),则可以把形式一写成:
f ( n ) = ∑ i = 0 n C n i h ( i ) ( − 1 ) n h ( n ) = ∑ i = 0 n ( − 1 ) i C n i f ( i ) f(n)=\displaystyle \sum_{i=0}^nC_n^ih(i)\\ (-1)^nh(n)=\displaystyle \sum_{i=0}^n(-1)^iC_n^if(i) f(n)=i=0nCnih(i)(1)nh(n)=i=0n(1)iCnif(i)

下面的式子可以写成:
h ( n ) = ∑ i = 0 n ( − 1 ) i − n C n i f ( i ) = ∑ i = 0 n ( − 1 ) n − i C n i f ( i ) \begin{align*} h(n) = &\displaystyle \sum_{i=0}^n(-1)^{i-n}C_n^if(i)\\ = &\displaystyle \sum_{i=0}^n(-1)^{n-i}C_n^if(i) \end{align*} h(n)==i=0n(1)inCnif(i)i=0n(1)niCnif(i)
h ( i ) h(i) h(i) 代换成 g ( i ) g(i) g(i),并整理得:
f ( n ) = ∑ i = 0 n C n i g ( i ) g ( n ) = ∑ i = 0 n ( − 1 ) n − i C n i f ( i ) f(n)=\displaystyle \sum_{i=0}^nC_n^ig(i)\\g(n)=\displaystyle \sum_{i=0}^n(-1)^{n-i}C_n^if(i) f(n)=i=0nCnig(i)g(n)=i=0n(1)niCnif(i)

得证.

形式三&形式四

由于这两种形式的证明方法和形式结构类似,且常用这两种形式解决问题,因而放在一起。

  1. 对于任意正整数 n n n,若
    f ( n ) = ∑ i = m n C n i g ( i ) f(n)=\displaystyle \sum_{i=m}^nC_n^ig(i) f(n)=i=mnCnig(i)


    g ( n ) = ∑ i = m n ( − 1 ) n − i C n i f ( i ) g(n)=\displaystyle \sum_{i=m}^n(-1)^{n-i}C_n^if(i) g(n)=i=mn(1)niCnif(i)

    证明
    g ( n ) = ∑ i = m n ( − 1 ) n − i C n i f ( i ) = ∑ i = m n ( − 1 ) n − i C n i ∑ j = m i C i j g ( j ) = ∑ j = m n g ( j ) ∑ i = j n ( − 1 ) n − i C n i C i j = ∑ j = m n g ( j ) C n j ∑ i = j n ( − 1 ) n − i C n − j i − j = ∑ j = m n g ( j ) C n j ∑ 令 t = i − j , t = 0 n − j ( − 1 ) n − j − t C n − j t = ∑ j = m n g ( j ) C n j ∑ t = 0 n − j ( − 1 ) n − j − t C n − j t ∗ 1 t = ∑ j = m n g ( j ) C n j ∗ ( 1 − 1 ) n − j = g ( n ) \begin{align*} g(n) = &\displaystyle \sum_{i=m}^n(-1)^{n-i}C_n^if(i)\\ = &\displaystyle \sum_{i=m}^n(-1)^{n-i}C_n^i\displaystyle \sum_{j=m}^iC_i^jg(j)\\ = &\displaystyle \sum_{j=m}^ng(j)\displaystyle \sum_{i=j}^n(-1)^{n-i}C_n^iC_i^j\\ = &\displaystyle \sum_{j=m}^ng(j)C_n^j\displaystyle \sum_{i=j}^n(-1)^{n-i}C_{n-j}^{i-j}\\ = &\displaystyle \sum_{j=m}^ng(j)C_n^j\displaystyle \sum_{令t=i-j,t=0}^{n-j}(-1)^{n-j-t}C_{n-j}^{t}\\ = &\displaystyle \sum_{j=m}^ng(j)C_n^j\displaystyle \sum_{t=0}^{n-j}(-1)^{n-j-t}C_{n-j}^{t}*1^{t}\\ = &\displaystyle \sum_{j=m}^ng(j)C_n^j*(1-1)^{n-j}\\ = &g(n) \end{align*} g(n)========i=mn(1)niCnif(i)i=mn(1)niCnij=miCijg(j)j=mng(j)i=jn(1)niCniCijj=mng(j)Cnji=jn(1)niCnjijj=mng(j)Cnjt=ij,t=0nj(1)njtCnjtj=mng(j)Cnjt=0nj(1)njtCnjt1tj=mng(j)Cnj(11)njg(n)

    得证.

  2. 对于任意正整数 n n n,若
    f ( n ) = ∑ i = n m C n i g ( i ) f(n)=\displaystyle \sum_{i=n}^mC_n^ig(i) f(n)=i=nmCnig(i)


    g ( n ) = ∑ i = n m ( − 1 ) i − n C n i f ( i ) g(n)=\displaystyle \sum_{i=n}^m(-1)^{i-n}C_n^if(i) g(n)=i=nm(1)inCnif(i)

    证明同形式三。

  • 14
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值