昇思25天学习打卡营第16天|munger85

基于MobileNetv2的垃圾分类

MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络
首先安装依赖
在这里插入图片描述
下载数据
from download import download

下载data_en数据集

url = “https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MindStudio-pc/data_en.zip”
path = download(url, “./”, kind=“zip”, replace=True)

下载模型
from download import download

下载预训练权重文件

url = “https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/ComputerVision/mobilenetV2-200_1067.zip”
path = download(url, “./”, kind=“zip”, replace=True)

设置设备,为什么是cpu,却说是ascend

在这里插入图片描述
把分类映射到数字
在这里插入图片描述
看下训练数据
在这里插入图片描述
每个分类是目录名
在这里插入图片描述
在许多计算机视觉任务中,如图像分类、目标检测和语义分割,网络的前几层通常被称为“backbone”。而特征图的通道数就是这个backbone out channels
在这里插入图片描述
来保持模型不要被过拟合。来衰减训练过程太固定
在这里插入图片描述
数据预处理,好几个操作来增加丰富度。
RandomHorizontalFlip是把图片水平翻转。
在这里插入图片描述
看看数据被处理成
在这里插入图片描述
cnn的nn的建立
在这里插入图片描述最终的nn是
在这里插入图片描述
在这里插入图片描述
这nn还是挺麻烦的。
为了训练的稳定,动态下降LR

在这里插入图片描述
不懂为什么要换精度
在这里插入图片描述
在这里插入图片描述终于开始训练
训练好了,推理
把图片处理成tensor给模型

在这里插入图片描述在这里插入图片描述

导出为onnx通用格式

在这里插入图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值