Atcoder ARC143 B - Counting Grids 题解

非常好计数题。

题目大意

使用 1 ∼ N 2 1\sim N^2 1N2 的每一个整数填充一个 N ∗ N N*N NN 的表格,每个格子至少满足以下条件之一:

  • 在同一列中,有一个方块里面的数字比该方块的数字大。
  • 在同一行中,有一个方块里面的数字比该方块的数字小。

求填充表格的方案数。

思路

对于一个合法的方案可能有很多种,重要的是我们不知道从何处下手解决,所里这里采用正难则反的方法,考虑不合法的方案有多少种,再用总的方案数减去不合法方案数即可。

该题有一个特殊的结论,需要简单思考一下,也很显然:一个不合法方案中有且仅有一个数对于上述条件都不满足。
假设有两个格子不满足条件,设其坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)。那么它们需要满足:

  • A x 1 , y 1 > A x 2 , y 1 A_{{x_1},{y_1}}>A_{{x_2},{y_1}} Ax1,y1>Ax2,y1 A x 1 , y 1 < A x 1 , y 2 A_{{x_1},{y_1}}<A_{{x_1},{y_2}} Ax1,y1<Ax1,y2
  • A x 2 , y 2 > A x 1 , y 2 A_{{x_2},{y_2}}>A_{{x_1},{y_2}} Ax2,y2>Ax1,y2 A x 2 , y 2 < A x 2 , y 1 A_{{x_2},{y_2}}<A_{{x_2},{y_1}} Ax2,y2<Ax2,y1
  • 联立后得到 A x 2 , y 1 > A x 1 , y 2 A_{{x_2},{y_1}}>A_{{x_1},{y_2}} Ax2,y1>Ax1,y2 A x 2 , y 1 < A x 1 , y 2 A_{{x_2},{y_1}}<A_{{x_1},{y_2}} Ax2,y1<Ax1,y2,自相矛盾,反证法可以证明结论成立。

接下来考虑不合法的方案数:
若这个不合法的格子内填的数是 i i i,它是该行中最小的数,可选方案数为 A n 2 − i n − 1 A_{n^2-i}^{n-1} An2in1;它也是该列中最大的数,可选方案数为 A i − 1 n − 1 A_{i-1}^{n-1} Ai1n1
有多少数是可以填进这个不合法的格子的呢?考虑到该行该列都还需要填 n − 1 n-1 n1 个数,所以 i i i 的范围是 n ∼ n 2 − n + 1 n \sim n^2-n+1 nn2n+1。对于其他的格子,由结论可知,无论怎么填都是合法的,由于已经填了 2 n − 1 2n-1 2n1 个数,所以此时方案数为 ( n 2 − 2 n + 1 ) ! (n^2-2n+1)! (n22n+1)! ( n − 1 ) 2 ! (n-1)^2! (n1)2!
再考虑到这个不合法格子有 n 2 n^2 n2 个位置可选,可以得到以下不合法方案的计算式子:

∑ i = n n 2 − n + 1 A n 2 − i n − 1 A i − 1 n − 1 ∗ ( n − 1 ) 2 ! ∗ n 2 \displaystyle\sum_{i=n}^{n^2-n+1} A_{n^2-i}^{n-1}A_{i-1}^{n-1}*(n-1)^2!*n^2 i=nn2n+1An2in1Ai1n1(n1)2!n2

对于总的方案数,显然有 n 2 ! n^2! n2! 种方案,拿总方案数减去不合法方案数即可,式子:

n 2 ! − ∑ i = n n 2 − n + 1 A n 2 − i n − 1 A i − 1 n − 1 ∗ ( n − 1 ) 2 ! ∗ n 2 n^2!- \sum_{i=n}^{n^2-n+1} A_{n^2-i}^{n-1}A_{i-1}^{n-1}*(n-1)^2!*n^2 n2!i=nn2n+1An2in1Ai1n1(n1)2!n2

注意到 A n m = n ! ( n − m ) ! A_n^m= \dfrac{n!}{(n-m)!} Anm=(nm)!n!,用费马小定理解决逆元即可。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 998244353
ll n,fac[1001000],ans;
ll ksm(ll a,ll b)
{
    ll res=1;
    while(b)
    {
        if(b&1) res=res*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return res;
}
ll A(ll x,ll y)
{
    return fac[x]*ksm(fac[x-y],mod-2)%mod;
}
int main()
{
    cin>>n;
    fac[0]=1;
    for(int i=1;i<=n*n;i++) fac[i]=fac[i-1]*i,fac[i]%=mod;
    for(int i=n;i<=n*n-n+1;i++)
    {
        ans+=A(n*n-i,n-1)*A(i-1,n-1)%mod;
        ans%=mod;
    }
    ans=ans*fac[(n-1)*(n-1)]%mod*n%mod*n%mod;
    ans=(fac[n*n]-ans+mod)%mod;
    cout<<ans;
    return 0;
}
  • 22
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值