在数论,对正整数n,欧拉函数是小于n的正整数与n互质数的数目(f(1)=1),例如f(8)=4,因为1,3,5,7均和8互质
(再提一下互质,互质就是两个数字的公约数只有1,叫做互为质整数。)
公式:
(2)注意:每种质因数只一个。 比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4
(3)若n是质数p的k次幂
,因为除了p的倍数外,其他数都跟n互质
/*
特性 :
1.若a为质数,phi[a]=a-1;
2.若a为质数,a mod b=0,phi[a*b]=phi[b]*a
3.若a,b互质,phi[a*b]=phi[a]*phi[b](当a为质数时,if b mod !=0 ,phi[a*b]=phi[a]*phi[b])
*/
int m[n],phi[n],p[n],nump;
//m[i]标记i是否为素数,0为素数,1不为素数;p是存放素数的数组;nump是当前素数个数;phi[i]为欧拉函数
int make()
{
phi[1]=1;
for (int i=2;i<=n;i++)
{
if (!m[i])//i为素数
{
p[++nump]=i;//将i加入素数数组p中
phi[i]=i-1;//因为i是素数,由特性得知
}
for (int j=1;j<=nump&&p[j]*i<n;j++) //用当前已的到的素数数组p筛,筛去p[j]*i
{
m[p[j]*i]=1;//可以确定i*p[j]不是素数
if (i%p[j]==0) //看p[j]是否是i的约数,因为素数p[j],等于判断i和p[j]是否互质
{
phi[p[j]*i]=phi[i]*p[j]; //特性2
break;
}
else phi[p[j]*i]=phi[i]*(p[j]-1); //互质,特性3其,p[j]-1就是phi[p[j]]
}
}
}