目录
蒙特卡洛方法(Monte Carlo Method)是一种基于随机采样的数值计算方法,广泛应用于概率统计、优化、模拟和机器学习等领域。它因二战期间解决复杂数学问题而得名,用以向摩纳哥的著名赌场致敬。
在本文中,我们将深入了解蒙特卡洛方法的基本原理、常见应用场景,并提供Python代码示例。
一、什么是蒙特卡洛方法?
蒙特卡洛方法通过以下步骤实现问题的求解:
- 建立数学模型:将待解决的问题转化为一个概率模型。
- 随机采样:生成大量随机数或样本,模拟系统或现象的行为。
- 统计结果:通过样本的统计特性来近似问题的解。
它的核心思想是利用大数定律:当样本数量足够大时,随机变量的均值可以接近其数学期望。
二、蒙特卡洛方法的基本原理
1. 估计积分
假设我们需要计算一个函数 在区间
上的积分:
蒙特卡洛方法通过以下公式估算:
其中, 是在
区间内均匀采样的随机数。
2. 计算概率
对于一个复杂事件