转动任意度数后求转动后的坐标(数学问题)

已知圆心和圆上一点的坐标,求圆上该点转动任意弧度之后的坐标。

圆心(a,b),已知点A(x,y),逆时针转动弧度c(若是顺时针,则把c改成-c即可),点A变成点B(x',y')。
设圆半径为r,圆心与A的连线与x轴夹角的弧度为d,则有
x-a=r*cosd
y-b=r*sind
所以,
x'-a=r*cos(d+c)=r*cosd*cosc-r*sind*sinc=(x-a)cosc-(y-b)sinc
y'-b=r*sin(d+c)=r*sind*cosc+r*cosd*sinc=(y-b)cosc+(x-a)sinc
所以,
x'=(x-a)cosc-(y-b)sinc+a
y'=(y-b)cosc+(x-a)sinc+b

 

这里如果不是圆 而是坐标原点 那么可以直接把a和b去掉。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值