缩点

本文介绍了有向图的缩点概念,即把有向有环图中的环缩成点,形成有向无环图。重点讨论了如何找到点权最大的路径,并解释了强连通分量的定义。通过Tarjan算法进行深度优先搜索,区分横叉边和后向边,以判断环的形成,并展示了如何处理这两种边的情况,最终确定连通分量。
摘要由CSDN通过智能技术生成

缩点,就是把一张有向有环图中的环缩成一个个点,形成一个有向无环图。

根据题目意思,我们只需要找出一条点权最大的路径就行了,不限制点的个数。那么考虑对于一个环上的点被选择了,一整条环是不是应该都被选择,这一定很优,能选干嘛不选。很关键的是题目还允许我们重复经过某条边或者某个点,我们就不需要考虑其他了。因此整个环实际上可以看成一个点(选了其中一个点就应该选其他的点)

 

强连通定义:在有向图G<V,E>中,对于点集V'∈V, 点集中的任意两点都可达,则称V'为强连通。

 

孤立的一个点也是一个强连通分量

 

在嵌套的多个环时 : {所有环上的点}为一个强连通分量( 最小环就是每个孤立点)注意一定是满足条件的最大点集。

则上图中强连通分量有 {1},{2},{3},{7},{4,5,6}

---------------------------------------------------------------------------

tarjan的过程就是dfs过程

对图dfs一下,遍历所有未遍历过的点 ,会得到一个有向树,显然有向树是没有环的。(注意搜过的点不会再搜)

则能产生环的 只有(指向已经遍历过的点)的边

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值