一.什么是区间dp?
顾名思义:区间dp就是在区间上进行动态规划,求解一段区间上的最优解。主要是通过合并小区间的 最优解进而得出整个大区间上最优解的dp算法。
二.核心思路
既然让我求解在一个区间上的最优解,那么我把这个区间分割成一个个小区间,求解每个小区间的最优解,再合并小区间得到大区间即可。所以在代码实现上,我可以枚举区间长度len为每次分割成的小区间长度(由短到长不断合并),内层枚举该长度下可以的起点,自然终点也就明了了。然后在这个起点终点之间枚举分割点,求解这段小区间在某个分割点下的最优解。
一般的形式
for(int len = 1;len<=n;len++){//枚举长度
for(int j = 1;j+len<=n+1;j++){//枚举起点,ends<=n
int ends = j+len - 1;
for(int i = j;i<ends;i++){//枚举分割点,更新小区间最优解
dp[j][ends] = min(dp[j][ends],dp[j][i]+dp[i+1][ends]+something);
}
}
}
/*
51nod 1021
*/
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
int a[110];
int dp[110][110];
int sum[110];//dp[i][j] i到j最小花费
int main()
{
int n;scanf("%d",&n);
memset(dp,inf,sizeof(dp));
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
dp[i][i]=0;
}
for(int len=1;len<=n;len++){
for(int j=1;j+len<=n+1;j++){
int end=j+len-1;
for(int i=j;i<end;i++){
dp[j][end]=min(dp[j][end],dp[j][i]+dp[i+1][end]+sum[end]-sum[j-1]);
}
}
}
printf("%d\n",dp[1][n]);
return 0;
}
51node 1022 石子归并 V2
思路:环状以后合并区间的情况就可以从后往前合并,最后合并完成可能是1~n,2~