摘要
我们的目标是通过使用神经网络模型来联合开发结构化数据和时间信息。基于这个原因,我们提出了两种新的方法,将长-短期记忆网络和图卷积网络结合起来,结合图结构来学习长-短期依赖关系。
介绍
balabalbala....,许多真实世界的结构化数据是动态的,并且图中的节点/边可能会随着时间而变化。在这种动态场景中,时间信息也可以发挥重要作用。
LSTM和GCN简介。
本文的组织结构如下:第2节总结了最相关的方法。在第3节中,我们描述了我们的方法。第4节介绍了与基准方法的比较。第5节通过讨论我们的发现和未来可能的扩展来结束本文。
相关工作
有少量的方法被设计用于对动态网络中的节点进行分类[14,22]。Li等人[14]提出了一种能够学习潜在特征表示并捕获动态模式的方法。Yao等人[22]提出了一种基于支持向量机的方法,该方法将先前时间瞬间的支持向量与当前训练数据相结合,以利用时间关系。Pei等人[17]为动态社交网络中的节点分类定义了一种称为动态因子图模型的方法。更准确地说,这种方法将动态图形数据组织成一系列图形。设计了三种类型的因子,即节点因子、相关因子和动态因子,分别捕获节点特征、节点相关性和时间相关性。节点因子和相关因子被设计用来捕获图结构的全局和局部特性,而动态因子则利用了时间信息。
总结:以上提及的神经网络结构不能正确处理时间信息(无法捕捉动态--个人理解)。
我们的方法(跩~)
由于我们感兴趣的任务的动态性质,本文提出的新网络结构将适用于图的有序序列和顶点特征的有序序列。
我们的贡献基于将图卷积的扩展(GC,GCNs的基本层)和LSTM的改进版本相结合的思想,从而通过利用图结构数据和顶点特