Learning to Represent the Evolution of Dynamic Graphs withRecurrent Models

摘要

学习图的拓扑结构外,还关注于学习时间信息。提出了一种动态图的无监督表示学习体系结构,旨在学习随时间演化的图的拓扑和时间特征。该方法由嵌入门控图神经网络(GGNNs)和长短时记忆网络(LSTM)的序列-序列编解码器模型组成。GGNN能够在每个时间步学习图的拓扑结构,而LSTM则用于在时间步之间传播时间信息。此外,编码器学习进化图的时间动态,解码器使用编码器提供的编码表示在相同的时间段重建动态。

相关工作

静态图

动态图

节点的表示学习。37-32-16-15-42-5-38

问题定义

动态图定义。初始节点表示由邻接矩阵表示。专注处理无向图的图嵌入。

序言和注释

GGNN,LSTM.Sequence-to-sequence.

动态图的递归模型

GGNN用于在每个时间步对图形拓扑进行建模,更具体地说是为编码器提供输入。编码器的循环结构允许我们使用时间步历史HG的隐藏表示和时间步t的图形拓扑嵌入Gt。

DyGGNN:该模型包括三个主要组件:1)一个GGNN,用于捕获时间步长t处的图形拓扑;2)一个编码器,用于将图形在时间步长窗口上的演化投影到ak维空间;3)一个解码器,用于使用隐藏表示在每个时间步长处重建动态图形的结构。图1显示了我们的动态图在时间步长上的表示学习方法的体系结构。

GGNN通过考虑Gt在时间步长t处的拓扑结构,为Gt构建一个图表示。

我们使用LSTM编码器将Gt投影到一个隐藏表示中,通过大小为w的观察窗口传递动态图形Hg的信息,并使用过去w个时间步的图形拓扑知识计算动态嵌入Gt。

 

 将这个称为图的动态嵌入。解码器LSTM-dec的主要目标是在大小为w的观察窗口中重建图形HGT的历史。解码器作为一个自回归模型,在给定最近在前一时间步预测的图的情况下,在时间步t预测图的拓扑。解码器使用henc T初始化其第一个隐藏状态。图的边集是解码器在每个时间步的预测。

 训练

  O是时间窗口,大小为w。 

注意时间窗口大小w的选择。动态图G,它是一个图快照序列,我们需要考虑节点隐藏状态的序列。我们不能独立地考虑节点的序列,因为我们需要考虑图的时间和拓扑结构。使用滑动观察窗,我们将动态图分解为多个动态图。将连续窗口组合在一起,形成一个小批量(算法1)。通过这种方式,我们不仅保留了每个窗口的时间依赖性,而且还捕获了顺序窗口之间的隐式关系,因为模型参数是在考虑整个小批量输入数据的情况下更新的。

 数据集

基础方法

超参数

结果

动态性很重要,在嵌入方法中加入时间信息可以改进图形表示。

模型分析

图的动态表示的使得模型的精确性由于静态表示的。与静态表示相比,通过时间对模型进行训练可以显著提高动态嵌入的性能。

结论

我们提出了一种在动态环境下对整个图进行表示学习的有效方法。我们在一个真实的动物行为数据集中评估了我们的方法,结果表明,与在静态环境中学习图形表示的最先进模型相比,我们的模型取得了显著更好的性能。有前途的结果证实了我们的方法作为动态图形分析的坚实基础。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值