Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey.

摘要

目的是提供一篇综述,以揭开动态网络的神秘面纱,介绍动态图神经网络(DGNNs)。

(i)一个全面的动态网络分类,(ii)一个动态图神经网络的调查,(iii)一个动态图神经网络如何用于动态链接预测的概述。


简介


动态网络

探讨链接的不同定义,并介绍一种新的动态网络分类法。我们还简要概述了动态网络模型样貌,该样貌将调查的其余部分结合起来。

动态网络是随时间变化的复杂网络,其中的链接和节点可能会出现或消失。

数学定义:将V= {(v, ts, te)}和E= {(u, v, ts, te)}都带上开始时间和结束时间。

动态网络表示

按照时间粒度分为四个不同的级别:静态、边缘加权、离散、连续。(模型复杂度、时间粒度从左到右递增)。

静态网络没有时间信息。边加权网络的时间信息作为标签包含在静态网络的边和/或节点上,最直接的例子是一个静态网络,其边缘标记有它们上次活动的时间。离散网络以离散时间间隔表示,这些可以通过网络在不同时间间隔的多个快照来表示。连续网络没有应用于它们的时间聚合,这种表示方式承载了最多的信息,但也是最复杂的。

静态和边加权网络用于建模稳定模式或网络的实际状态,而离散和连续方法用于更动态的建模。

离散表示:离散表示使用一组有序的图(快照)来表示动态图。DG={G1,G2,.......GT},动态网络分析中也使用了重叠快照(如滑动时间窗口[25]),以减少从一个网络快照到下一个网络快照的根本性变化[26]。离散动态网络不需要表示为一组有序的图,它们也可以表示为多层网络[27]或张量[28]。

连续表示:连续网络表示是唯一具有精确时间信息的表示。这使得它们最为复杂,但也是最具潜力的表现形式。我们涵盖了三种连续表示:(i)基于事件的表示(ii)接触序列;以及(iii)图形流。前两种表示法取自时态网络文献,适用于链路持续时间不长的网络[2]、[8]、[11]。第三种表示是图流,用于边持续时间更长的动态网络[3]。这些表示中的重点是边处于活动状态时,而不提及节点上的更改。三种表示法(详细略)适用于网络取决于链路持续时间。

链接持续时间谱

根据网络拓扑来区分时态网络。动态拓扑网络根据链路持续时间还可以分为:

 研究更多的关注于:时间网络、进化网络。

时间网络:高度动态。度分布和聚类系数等网络特性不能直接从静态网络中采用,且定义起来非常繁琐。将链接视为具有持续时间的事件更为自然。

进化网络:动态网络,事件持续足够长的时间以建立网络结构。即时快照生成定义良好的网络。网络属性如度分布和聚类系数可以从静态网络中采用并逐步更新。这些是使用术语“动态网络”时最常提到的网络。链接会持续很长时间,因此更自然地认为链接出现是一个事件,而链接消失是另一个事件。

链路定义会影响链路持续时间,进而影响网络类型。可以通过改变链接持续时间的方式修改链接。

结点动态

 动态网络中的另一个区别因素是节点是否会出现或消失。在对网络建模时,有时更简单的假设是节点的数量可能不会改变,因此唯一可能的新链路是现有节点之间的链路。许多不断发展的网络模型假设边在新节点出现时出现。

对结点的变化进行分类,分成:静态、动态(节点出现、消失)、成长(节点只出现)。

动态网络立方体

 动态网络模型

重点关注动态网络结构的模型。建立链接规则,可以表达需要的特征。

动态网络表示学习包括多种方法,可用于将动态图嵌入到潜在空间中。动态网络的表征学习包括基于张量分解的模型、随机游动和深度学习。

潜空间模型和随机块体模型是生成概率模型。动态图的随机游动方法通常是静态图的基于随机游动的嵌入方法的扩展,或者它们应用时间随机游动,区分了两种类型的深度学习模型:(i)时间受限Boltzmann机器和(ii)动态图神经网络。 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
神经网络学习的理论基础主要涉及三个方面:神经网络模型、反向传播算法和优化方法。 首先,神经网络模型是神经网络学习的基础,其建立在生物神经元工作原理的基础上。神经网络模型由输入层、隐藏层和输出层组成,每个神经元与其他神经元之间通过连接进行信息传递。不同的神经网络模型有不同的结构和激活函数,如前馈神经网络、循环神经网络和卷积神经网络等。 其次,反向传播算法是神经网络学习中最常用的优化算法之一。该算法通过计算损失函数关于网络参数的梯度,并将该梯度反向传播到网络的每一层,以更新参数的值。反向传播算法的关键步骤包括前向传播计算输出值、计算损失函数、反向传播计算梯度和更新参数。通过不断迭代这些步骤,神经网络可以逐渐调整参数,达到更好的学习效果。 最后,优化方法对神经网络学习也起到至关重要的作用。常用的优化方法有梯度下降法、随机梯度下降法、动量法和自适应学习率方法等。这些方法通过调整参数的更新策略,帮助神经网络更好地学习和适应输入数据。此外,正则化技术如L1和L2正则化也可用于控制神经网络的复杂度和避免过拟合的问题。 综上所述,神经网络学习的理论基础主要包括神经网络模型、反向传播算法和优化方法。这些理论基础使得神经网络能够从数据中学习,并取得优秀的预测和分类性能。不断的研究和发展神经网络的理论基础,将进一步促进神经网络的应用和发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值