题意
给出n个节点的度数di,允许在任意两点间连线,可产生多少棵度数满足要求的树?若对度数不要求,则di=-1。
n<=1005;
题解
这道题需要知道Prufer数列的知识。
prufer数列是无根树的一种数列,数列与树两两对应。也就是说一种树只有唯一的一种数列来表示它。反过来给你一个数列,你总能把他转化成对应的唯一的树。
下面看数列和树是如何相互转换的:
树–>数列:每次选编号最小的叶节点(度为1),把与他相连的边加入数列,然后删去他。重复执行次过程,知道最后剩下两个点。所以n个节点的树将会转化为n-2个元素的序列。
数列–>树:设{a1,a2,..an-2}为Prufer序列,另建一个集合G含有元素{1..n},每次找出集合G中编号最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并分别将该点和Prufer序列首项删除,重复操作n-2次,最后将集合G中剩余的两个点之间连边即可。
prufer数列有个重要的性质:某节点的度数=该节点在prufer数列中出现的次数+1;
自己举几个例子,就可以理解了。
回到这道题。我们借助prufer数列把难搞的的树的方案数,转化为数列的方案数。
这样就好搞了。运用prufer数的性质,度为d的节点讲会在数列中出现d-1次。我们记tot=
∑nimax(d[i]−1,0)
表示数列中确定的数的个数,记m为d[i]=-1的节点个数。对于这m个节点,没有限制出现次数,方案数为 m^(n-2-tot)。对于其他的tot个数,要求在n-2大小的数组中插入tot个数,共有种C(n-2,tot)插法;
在tot各序号排列中,插第一个节点的方法有C(tot,d1-1)种,插第二个节点的方法有C(tot-(d1-1),d2-1)种,插第三个节点的方法有C(tot-(d1-1)-(d2-1),d3-1)种…全部乘起来即可。
求组合数的话就是质因数分解之后搞一搞就行了。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=2005;
int n,m,d[maxn],p[maxn],tot;
bool vis[maxn];
void get_P(){
memset(vis,1,sizeof vis);
for(int i=2;i<=2000;i++) if(vis[i]){
p[++p[0]]=i;
for(int j=i;i*j<=2000;j++) vis[i*j]=false;
}
}
struct fac{
int k[maxn];
fac (int x=0){
memset(k,0,sizeof(k));
for(int i=1;i<=p[0];i++){
int now=p[i];
while(now<=x) k[i]+=x/now, now*=p[i];
}
}
fac operator + (const fac &b){
fac c; for(int i=1;i<=p[0];i++) c.k[i]=k[i]+b.k[i];
return c;
}
fac operator - (const fac &b){
fac c; for(int i=1;i<=p[0];i++) c.k[i]=k[i]-b.k[i];
return c;
}
} res;
const int con=100000000;
typedef long long LL;
struct Int{
LL a[505];
Int(int x=0){
memset(a,0,sizeof(a));
do a[++a[0]]=x%con, x/=con; while(x);
}
Int operator * (const Int &b){
Int c; c.a[0]=a[0]+b.a[0];
for(int i=1;i<=a[0];i++)
for(int j=1;j<=b.a[0];j++) c.a[i+j-1]+=a[i]*b.a[j], c.a[i+j]+=c.a[i+j-1]/con, c.a[i+j-1]%=con;
while(c.a[0]>1&&!c.a[c.a[0]]) c.a[0]--;
return c;
}
void write(){
printf("%lld",a[a[0]]);
for(int i=a[0]-1;i>=1;i--) printf("%08lld",a[i]);
}
} ans;
Int power(Int a,int b){
if(!b) return Int(1);
if(b&1) return power(a,b-1)*a;
Int t=power(a,b/2);
return t*t;
}
int main(){
freopen("bzoj1005.in","r",stdin);
freopen("bzoj1005.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&d[i]), tot+=(d[i]!=-1)?d[i]-1:0, m+=(d[i]==-1);
if(tot>n-2){ printf("0\n"); return 0; }
get_P();
res=fac(n-2)-fac(tot)-fac(n-2-tot);
int now=0;
for(int i=1;i<=n;i++) if(d[i]!=-1){
res=res+fac(tot-now)-fac(d[i]-1)-fac(tot-now-d[i]+1);
now+=d[i]-1;
}
ans=power(m,n-2-tot);
for(int i=1;i<=p[0];i++) ans=ans*power(Int(p[i]),res.k[i]);
ans.write();
return 0;
}