题意
给定平面上n对点(共2n个点),每对点必须且只能选一个。以选出的n个点做圆,这些圆不能有公共部分。求n个圆的半径的最小值的最大值。
题解
我的第一道2-SAT。
容易想到二分答案,每对点的选择可以看做是一个布尔变量,真表示取第一个,假表示取第二个。根据当前二分的半径可以判断出某两个点能否同时取到。这就得到了一堆限制。然后2-SAT进行验证即可。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define sqr(x) ((x)*(x))
using namespace std;
const int maxn=205,maxe=100005;
const double eps=1e-8;
int n,m,fir[maxn],nxt[maxe],son[maxe],tot;
int dfn[maxn],low[maxn],Tim,stk[maxn],top,G,blg[maxn];
bool instk[maxn];
double mid,ans;
struct data{ double x,y; } a[maxn*2];
void add(int x,int y){
son[++tot]=y; nxt[tot]=fir[x]; fir[x]=tot;
}
int dcmp(double x){
if(fabs(x)<eps) return 0; return x>0?1:-1;
}
bool pd(int i,int j){ return dcmp(sqr(a[i].x-a[j].x)+sqr(a[i].y-a[j].y)-sqr(mid*2))==-1; }
void Tarjan(int x){
dfn[x]=low[x]=++Tim; stk[++top]=x; instk[x]=true;
for(int j=fir[x];j;j=nxt[j]){
if(!dfn[son[j]]) Tarjan(son[j]), low[x]=min(low[x],low[son[j]]); else
if(instk[son[j]]) low[x]=min(low[x],dfn[son[j]]);
}
if(dfn[x]==low[x]){
G++;
do{
blg[stk[top]]=G;
instk[stk[top]]=false;
}while(stk[top--]!=x);
}
}
bool check(){
memset(fir,0,sizeof fir); tot=0;
for(int i=1;i<=n-1;i++)
for(int j=i+1;j<=n;j++){
if(pd(i*2-1,j*2-1)) add(i*2-1,j*2), add(j*2-1,i*2);
if(pd(i*2-1,j*2)) add(i*2-1,j*2-1), add(j*2,i*2);
if(pd(i*2,j*2-1)) add(i*2,j*2), add(j*2-1,i*2-1);
if(pd(i*2,j*2)) add(i*2,j*2-1), add(j*2,i*2-1);
}
memset(dfn,0,sizeof(dfn)); memset(low,0,sizeof(low)); Tim=0;
memset(instk,0,sizeof(instk)); top=G=0;
for(int i=1;i<=n*2;i++) if(!dfn[i]) Tarjan(i);
for(int i=1;i<=n;i++) if(blg[i*2]==blg[i*2-1]) return false;
return true;
}
int main(){
freopen("hdu3622.in","r",stdin);
freopen("hdu3622.out","w",stdout);
while(scanf("%d",&n)==1){
for(int i=1;i<=n;i++) scanf("%lf%lf%lf%lf",&a[i*2-1].x,&a[i*2-1].y,&a[i*2].x,&a[i*2].y);
double L=eps,R=1e+20;
while(R-L>=0.0001){
mid=(L+R)/2;
if(check()) L=mid, ans=mid;
else R=mid;
}
printf("%.2lf\n",ans);
}
}