HDU-3622-Bomb Game(二分+2-sat)

题目链接:Bomb Game

题目大意:

二维平面下,每次给定两个点,必选其一为圆心画圆,要求所有圆不相交,且最小半径最大。

思路:

两圆不相交,半径最好取圆心距的一半。
二分答案,点和点之间就有了约束关系,变成了一个 2 − s a t 2-sat 2sat问题。
两点之间必选一点,以 i i i表示选第一个 i + n i+n i+n表示不选(即选第二个)。
不同的 i i i之间有 4 4 4种关系:
必须要注意在这个问题上是有向边。
假如 i − > j + n i->j+n i>j+n有边条件是 i 和 j i和j ij的圆心距大于 2 ∗ a n s 2*ans 2ans
反过来假如 j + n − > i j+n->i j+n>i有边条件是 j + n 和 i + n j+n和i+n j+ni+n的圆心距大于 2 ∗ a n s 2*ans 2ans
故是有向边。
在这里插入图片描述

c h e c k check check函数:

bool check(double r){
	init();
	for(int i=1;i<=n;i++){
		for(int j=i+1;j<=n;j++){  // 枚举所有关系
			if(2*r>find(a[i].x1,a[i].y1,a[j].x1,a[j].y1)){
				ve[i].push_back(j+n);
				ve[j].push_back(i+n);
			}
			if(2*r>find(a[i].x1,a[i].y1,a[j].x2,a[j].y2)){
				ve[i].push_back(j);
				ve[j+n].push_back(i+n);
			}
			if(2*r>find(a[i].x2,a[i].y2,a[j].x1,a[j].y1)){
				ve[i+n].push_back(j+n);
				ve[j].push_back(i);
			}
			if(2*r>find(a[i].x2,a[i].y2,a[j].x2,a[j].y2)){
				ve[i+n].push_back(j);
				ve[j+n].push_back(i);
			}
		}
	}
	for(int i=1;i<=n*2;i++){  // 求强连通分量
		if(!dfn[i]) tarjan(i);
	}
	for(int i=1;i<=n*2;i++){
		if(bel[i]==bel[i+n]) return 0;  // 矛盾
	}
	return 1;
}

注意初始化和浮点数二分的精度。

Code:

#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
#include <vector>
#include <string>
#include <iomanip>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
//#include <unordered_map>
#define guo312 std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define ll long long
#define Inf LONG_LONG_MAX
#define inf INT_MAX
#define endl "\n"
#define PI 3.1415926535898
using namespace std;
const int N=1e3+10;
int n;
struct PW{
	double x1,y1,x2,y2;
}a[N];

double find(double x1,double y1,double x2,double y2){
	return  sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}

vector<int> ve[N];
stack<int> p;
int dfn[N],low[N],vis[N],bel[N],ti=0,cnt=0;
void init(){
	for(int i=1;i<=n*2;i++){
		dfn[i]=low[i]=vis[i]=bel[i]=0;
	}
	ti=0,cnt=0;
	while(!p.empty()){
		p.pop();
	}
	for(int i=1;i<=n*2;i++){
		ve[i].clear();
	}
}

void tarjan(int u){
	low[u]=dfn[u]=++ti;
	p.push(u),vis[u]=1;
	for(auto it:ve[u]){
		if(!dfn[it]){
			tarjan(it);
			low[u]=min(low[u],low[it]);
		}
		else if(vis[it]){
			low[u]=min(low[u],dfn[it]);
		}
	}
	if(dfn[u]==low[u]){
		++cnt; int s;
		do{
			s=p.top(); p.pop();
			vis[s]=0,bel[s]=cnt;
		}while(s!=u);
	}
}

bool check(double r){
	init();
	for(int i=1;i<=n;i++){
		for(int j=i+1;j<=n;j++){
			if(2*r>find(a[i].x1,a[i].y1,a[j].x1,a[j].y1)){
				ve[i].push_back(j+n);
				ve[j].push_back(i+n);
			}
			if(2*r>find(a[i].x1,a[i].y1,a[j].x2,a[j].y2)){
				ve[i].push_back(j);
				ve[j+n].push_back(i+n);
			}
			if(2*r>find(a[i].x2,a[i].y2,a[j].x1,a[j].y1)){
				ve[i+n].push_back(j+n);
				ve[j].push_back(i);
			}
			if(2*r>find(a[i].x2,a[i].y2,a[j].x2,a[j].y2)){
				ve[i+n].push_back(j);
				ve[j+n].push_back(i);
			}
		}
	}
	for(int i=1;i<=n*2;i++){
		if(!dfn[i]) tarjan(i);
	}
	for(int i=1;i<=n*2;i++){
		if(bel[i]==bel[i+n]) return 0;
	}
	return 1;
}

int main(){
//guo312;
	while(scanf("%d",&n)!=EOF){
		for(int i=1;i<=n;i++){
			scanf("%lf%lf%lf%lf",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2);
		}
		double l=0.0,r=1000000.0,eps=1e-4;
		while(r-l>eps){
			double mid=(l+r)/2.0;
			if(check(mid)) l=mid;
			else r=mid;
		}
		printf("%.2lf\n",l);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要用bug来打败bug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值