题目链接:Bomb Game
题目大意:
二维平面下,每次给定两个点,必选其一为圆心画圆,要求所有圆不相交,且最小半径最大。
思路:
两圆不相交,半径最好取圆心距的一半。
二分答案,点和点之间就有了约束关系,变成了一个
2
−
s
a
t
2-sat
2−sat问题。
两点之间必选一点,以
i
i
i表示选第一个
i
+
n
i+n
i+n表示不选(即选第二个)。
不同的
i
i
i之间有
4
4
4种关系:
必须要注意在这个问题上是有向边。
假如
i
−
>
j
+
n
i->j+n
i−>j+n有边条件是
i
和
j
i和j
i和j的圆心距大于
2
∗
a
n
s
2*ans
2∗ans。
反过来假如
j
+
n
−
>
i
j+n->i
j+n−>i有边条件是
j
+
n
和
i
+
n
j+n和i+n
j+n和i+n的圆心距大于
2
∗
a
n
s
2*ans
2∗ans。
故是有向边。
c h e c k check check函数:
bool check(double r){
init();
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){ // 枚举所有关系
if(2*r>find(a[i].x1,a[i].y1,a[j].x1,a[j].y1)){
ve[i].push_back(j+n);
ve[j].push_back(i+n);
}
if(2*r>find(a[i].x1,a[i].y1,a[j].x2,a[j].y2)){
ve[i].push_back(j);
ve[j+n].push_back(i+n);
}
if(2*r>find(a[i].x2,a[i].y2,a[j].x1,a[j].y1)){
ve[i+n].push_back(j+n);
ve[j].push_back(i);
}
if(2*r>find(a[i].x2,a[i].y2,a[j].x2,a[j].y2)){
ve[i+n].push_back(j);
ve[j+n].push_back(i);
}
}
}
for(int i=1;i<=n*2;i++){ // 求强连通分量
if(!dfn[i]) tarjan(i);
}
for(int i=1;i<=n*2;i++){
if(bel[i]==bel[i+n]) return 0; // 矛盾
}
return 1;
}
注意初始化和浮点数二分的精度。
Code:
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
#include <vector>
#include <string>
#include <iomanip>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
//#include <unordered_map>
#define guo312 std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define ll long long
#define Inf LONG_LONG_MAX
#define inf INT_MAX
#define endl "\n"
#define PI 3.1415926535898
using namespace std;
const int N=1e3+10;
int n;
struct PW{
double x1,y1,x2,y2;
}a[N];
double find(double x1,double y1,double x2,double y2){
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
vector<int> ve[N];
stack<int> p;
int dfn[N],low[N],vis[N],bel[N],ti=0,cnt=0;
void init(){
for(int i=1;i<=n*2;i++){
dfn[i]=low[i]=vis[i]=bel[i]=0;
}
ti=0,cnt=0;
while(!p.empty()){
p.pop();
}
for(int i=1;i<=n*2;i++){
ve[i].clear();
}
}
void tarjan(int u){
low[u]=dfn[u]=++ti;
p.push(u),vis[u]=1;
for(auto it:ve[u]){
if(!dfn[it]){
tarjan(it);
low[u]=min(low[u],low[it]);
}
else if(vis[it]){
low[u]=min(low[u],dfn[it]);
}
}
if(dfn[u]==low[u]){
++cnt; int s;
do{
s=p.top(); p.pop();
vis[s]=0,bel[s]=cnt;
}while(s!=u);
}
}
bool check(double r){
init();
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(2*r>find(a[i].x1,a[i].y1,a[j].x1,a[j].y1)){
ve[i].push_back(j+n);
ve[j].push_back(i+n);
}
if(2*r>find(a[i].x1,a[i].y1,a[j].x2,a[j].y2)){
ve[i].push_back(j);
ve[j+n].push_back(i+n);
}
if(2*r>find(a[i].x2,a[i].y2,a[j].x1,a[j].y1)){
ve[i+n].push_back(j+n);
ve[j].push_back(i);
}
if(2*r>find(a[i].x2,a[i].y2,a[j].x2,a[j].y2)){
ve[i+n].push_back(j);
ve[j+n].push_back(i);
}
}
}
for(int i=1;i<=n*2;i++){
if(!dfn[i]) tarjan(i);
}
for(int i=1;i<=n*2;i++){
if(bel[i]==bel[i+n]) return 0;
}
return 1;
}
int main(){
//guo312;
while(scanf("%d",&n)!=EOF){
for(int i=1;i<=n;i++){
scanf("%lf%lf%lf%lf",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2);
}
double l=0.0,r=1000000.0,eps=1e-4;
while(r-l>eps){
double mid=(l+r)/2.0;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.2lf\n",l);
}
return 0;
}