这是个比较显然的树形DP。即
f[i][j],g[i][j]
表示以
i
为根的子树中,访问了
一开始还以为这是暴力做法,实际上循环边界注意一下的话,实际复杂度是
O(n2)
的。相当于当儿子
v
更新父亲
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline char gc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int getint(){
char ch=gc(); int res=0;
while(!('0'<=ch&&ch<='9')) ch=gc();
while('0'<=ch&&ch<='9') res=(res<<3)+(res<<1)+ch-'0', ch=gc();
return res;
}
const int maxn=10005,maxe=20005;
int n,m,rt,sz[maxn],f[maxn][maxn],g[maxn][maxn],h[2][maxn];
int fir[maxn],nxt[maxe],son[maxe],w[maxe],tot;
inline void add(int x,int y,int z){
son[++tot]=y; w[tot]=z; nxt[tot]=fir[x]; fir[x]=tot;
}
void dfs(int x,int pre){
sz[x]=1; f[x][1]=g[x][1]=0;
for(int j=fir[x];j;j=nxt[j]) if(son[j]!=pre){
dfs(son[j],x);
for(int i=1;i<=sz[x]+sz[son[j]];i++) h[0][i]=f[x][i], h[1][i]=g[x][i];
for(int k=1;k<=min(sz[son[j]],m);k++)
for(int i=min(m,sz[x]+k);i>=k+1;i--){
h[0][i]=min(h[0][i],f[x][i-k]+f[son[j]][k]+w[j]*2);
h[1][i]=min(h[1][i],g[x][i-k]+f[son[j]][k]+w[j]*2);
h[1][i]=min(h[1][i],f[x][i-k]+g[son[j]][k]+w[j]);
}
sz[x]+=sz[son[j]];
for(int i=1;i<=sz[x];i++) f[x][i]=h[0][i], g[x][i]=h[1][i];
}
}
int main(){
n=getint(); m=getint(); rt=getint();
for(int i=1;i<=n-1;i++){
int x=getint(),y=getint(),z=getint();
add(x,y,z); add(y,x,z);
}
memset(f,63,sizeof(f)); memset(g,63,sizeof(g));
dfs(rt,rt);
printf("%d\n",g[rt][m]);
return 0;
}