题目描述
LYK有一个长度为n的序列a。
你只要告诉他所有区间(n*(n+1)/2个区间)中第k大的平均数就行了。
解题思路
显然要二分,考虑如何验证。
sum[R]−sum[L−1]>=x∗(R−L+1)——>sum[R]−x∗R>=sum[L−1]−x∗(L−1)
那么就是求 sum[i]−x∗i 的逆序对。
我用树状数组求的。
#include<cstdio>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=100005;
map<double,int> h;
int n,tot,s[maxn];
LL K;
double a[maxn],sum[maxn],L,R,mid,ans;
int lowbit(int x){return x&(-x);}
void add(int x){for (;x<=n+1;x+=lowbit(x)) s[x]++;}
int ask(int x){int num=0;for (;x;x-=lowbit(x)) num+=s[x];return num;}
bool check(double x){
memset(s,0,sizeof(s));
h.clear();tot=0;
for (int i=1;i<=n;i++) a[i]=sum[i]-x*i;
a[n+1]=0;sort(a+1,a+n+2);
for (int i=1;i<=n+1;i++) h[a[i]]=i;
add(h[0]);LL num=0;
for (int i=1;i<=n;i++){
int w=h[sum[i]-x*i];
num+=ask(w);add(w);
}
return num>=K;
}
int main(){
freopen("exam.in","r",stdin);
freopen("exam.out","w",stdout);
scanf("%d%lld",&n,&K);
for (int i=1;i<=n;i++){
double x;scanf("%lf",&x);
sum[i]=sum[i-1]+x;
if (x>R) R=x;
}
L=1;
while(R-L>=1e-4){
mid=(L+R)/2;
if (check(mid)) ans=mid,L=mid;else R=mid;
}
printf("%.4lf\n",ans);
return 0;
}