LYK有一个长度为n的序列a。
他最近在研究平均数。
他甚至想知道所有区间的平均数,但是区间数目实在太多了。
为了方便起见,你只要告诉他所有区间(n*(n+1)/2个区间)中第k大的平均数就行了。
Input
第一行两个数n,k(1<=n<=100000,1<=k<=n*(n+1)/2)。 接下来一行n个数表示LYK的区间(1<=ai<=100000)。
Output
一行表示第k大的平均数,误差不超过1e-4就算正确。
Input示例
5 3 1 2 3 4 5
Output示例
4.000
alpq654321
(题目提供者)
这题真的是耗费了我近半天的时间,真的调得烦死。简直找不出错,最后发现排序错了qwq真的是崩溃啊,写完题解好好睡一觉。
给你n个数,自然而然组成了n*(n+1)/2个区间,求这些区间第k大的平均数。
应该可以想到二分答案吧,可本蒟蒻却被判断难住了...
其实不难,二分出了第k大的平均数为x,那么如何统计平均数比x大的区间的个数呢。
对于每个平均数比x大的区间[i,j]都有(sum[j]-sum[i])/(j-i)>=x {i<=j}
展开,sum[j]-sum[i]>=x*j-x*i
sum[j]-x*j>=sum[i]-x*i
左边全部关于j右边全部关于i
所以我们可以处理出对于每个i,sum[i]-x*i的值(这是显然的)
剩下的就是用树状数组维护啊,不会树状数组用线段树应该也行。
精度问题稍微注意一下~ 那...撤啦
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#define ll long long
using namespace std;
const double eps=1e-5;
int t[100100],id[100100],n;
ll k;
struct node{
double v;
ll val;
int level;
}a[500000];
bool cmp(int x,int y){return a[x].v<a[y].v;}
int sum(int x){
int res=0;
while(x){
res+=t[x];
x-=x&-x;
}
return res;
}
void modify(int x){
while(x<=n){
t[x]++;
x+=x&-x;
}
}
ll solve(double x){
for(int i=1;i<=n;i++) a[i].v=(double)(a[i].val)-x*i;
sort(id,id+1+n,cmp);
int cnt=0;
for(int i=0;i<=n;i++){
if(i==0 || a[id[i]].v-a[id[i-1]].v>eps) cnt++;
a[id[i]].level=cnt;
}
for(int i=1;i<=n;i++) t[i]=0;
ll tot=0;
modify(a[0].level);
for(int i=1;i<=n;i++){
tot+=sum(a[i].level);
modify(a[i].level);
}
return tot;
}
int main()
{
scanf("%d%lld",&n,&k);
for(int i=1;i<=n;i++) scanf("%lld",&a[i].val);
for(int i=1;i<=n;i++){
a[i].val+=a[i-1].val;
id[i]=i;
}
double l=0,r=100001,ans=0;
while(r-l>=eps){
double mid=(l+r)/2;
if(solve(mid)>=k) l=mid+eps;
else{
r=mid-eps;
ans=mid;
}
}
printf("%.4lf\n",ans);
return 0;
}