P1156 垃圾陷阱(背包变形)

垃圾陷阱

题目描述

卡门――农夫约翰极其珍视的一条 Holsteins 奶牛――已经落了到 “垃圾井” 中。“垃圾井” 是农夫们扔垃圾的地方,它的深度为 D D D 2 ≤ D ≤ 100 2 \le D \le 100 2D100)英尺。

卡门想把垃圾堆起来,等到堆得与井同样高时,她就能逃出井外了。另外,卡门可以通过吃一些垃圾来维持自己的生命。

每个垃圾都可以用来吃或堆放,并且堆放垃圾不用花费卡门的时间。

假设卡门预先知道了每个垃圾扔下的时间 t t t 1 ≤ t ≤ 1000 1 \le t \le 1000 1t1000),以及每个垃圾堆放的高度 h h h 1 ≤ h ≤ 25 1 \le h \le 25 1h25)和吃进该垃圾能维持生命的时间 f f f 1 ≤ f ≤ 30 1 \le f \le 30 1f30),要求出卡门最早能逃出井外的时间,假设卡门当前体内有足够持续 10 10 10 小时的能量,如果卡门 10 10 10 小时内(不含 10 10 10 小时,维持生命的时间同)没有进食,卡门就将饿死。

输入格式

第一行为两个整数, D D D G G

洛谷P2240部分背包问题是一个经典的动态规划问题。问题描述是这样的:给定n种物品和一个容量为V的背包。每种物品都有自己的重量w[i]和价值v[i]。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。 这里的“部分背包”意味着我们可以选择物品的一部分放入背包中。这里给出一个C++的基本解法示例: ```cpp #include <iostream> #include <algorithm> using namespace std; int dp[1010][1010]; // dp[i][j] 表示前i件物品在不超过j重量的情况下可以获得的最大价值 int main() { int n, V; cin >> n >> V; for(int i = 0; i <= n; ++i) { for(int j = 0; j <= V; ++j) { dp[i][j] = 0; // 初始化dp数组为0 } } for(int i = 1; i <= n; ++i) { int w, v; cin >> w >> v; for(int j = 1; j <= V; ++j) { if(j >= w) { // 如果当前物品重量不超过背包容量,考虑取与不取两种情况,取最大值 dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v); } else { // 如果当前物品重量超过背包容量,则不能取这个物品 dp[i][j] = dp[i-1][j]; } } } cout << dp[n][V] << endl; // 输出最大价值 return 0; } ``` 这段代码首先初始化一个二维数组dp,其中dp[i][j]表示考虑前i件物品,当背包容量为j时能够得到的最大价值。之后,通过双层循环,从后往前遍历所有物品,并计算在不超过背包容量的情况下,每种物品的取与不取的最大价值,最终得到的最大价值存储在dp[n][V]中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值