MindSpore学习记录<第二天> 张量学习

MindSpore学习记录<第二天> 张量学习


什么是张量

张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在  𝑛
 维空间内,有  𝑛𝑟
个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。 𝑟
称为该张量的秩或阶(与矩阵的秩和阶均无关系)。

张量是一种特殊的数据结构,与数组和矩阵非常相似。张量(Tensor)是MindSpore网络运算中的基本数据结构,本教程主要介绍张量和稀疏张量的属性及用法。

import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor, CSRTensor, COOTensor

标量、向量、矩阵、张量的关系

这4个概念是维度不断上升的,我们用点线面体的概念来比喻解释会更加容易理解:

点——标量(scalar)
线——向量(vector)
面——矩阵(matrix)
体——张量(tensor)
在这里插入图片描述

创建张量

量的创建方式有多种,构造张量时,支持传入Tensor、float、int、bool、tuple、list和numpy.ndarray类型。

根据数据直接生成

可以根据数据创建张量,数据类型可以设置或者通过框架自动推断。

data = [1, 0, 1, 0]
x_data = Tensor(data)
print(x_data, x_data.shape, x_data.dtype)

[1 0 1 0] (4,) Int64

从NumPy数组生成

np_array = np.array(data)
x_np = Tensor(np_array)
print(x_np, x_np.shape, x_np.dtype)

[1 0 1 0] (4,) Int64

使用init初始化器构造张量

当使用init初始化器对张量进行初始化时,支持传入的参数有init、shape、dtype。

init: 支持传入initializer的子类。如:下方示例中的 One() 和 Normal()。其中normal表示生成的数据是正太分布
shape: 支持传入 list、tuple、 int。
dtype: 支持传入mindspore.dtype

from mindspore.common.initializer import One, Normal

# Initialize a tensor with ones
tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())
# Initialize a tensor from normal distribution
tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())

print("tensor1:\n", tensor1)
print("tensor2:\n", tensor2)

tensor1:
[[1. 1.]
[1. 1.]]
tensor2:
[[ 0.00279141 0.01264666]
[ 0.01440714 -0.00925768]]

init主要用于并行模式下的延后初始化,在正常情况下不建议使用init对参数进行初始化。

继承另一个张量的属性,形成新的张量

from mindspore import ops

x_ones = ops.ones_like(x_data)
print(f"Ones Tensor: \n {x_ones} \n")

x_zeros = ops.zeros_like(tensor1)
print(f"Zeros Tensor: \n {x_zeros} \n  {x_zeros.dtype},{x_zeros.shape}\n")
print(f"{x_data.dtype}")

Ones Tensor:
[1 1 1 1]
Zeros Tensor:
[[0. 0.]
[0. 0.]]
Float32,(2, 2)
Int64

张量的属性

张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。

形状(shape):Tensor的shape,是一个tuple。

数据类型(dtype):Tensor的dtype,是MindSpore的一个数据类型。

单个元素大小(itemsize): Tensor中每一个元素占用字节数,是一个整数。

占用字节数量(nbytes): Tensor占用的总字节数,是一个整数。

维数(ndim): Tensor的秩,也就是len(tensor.shape),是一个整数。

元素个数(size): Tensor中所有元素的个数,是一个整数。

每一维步长(strides): Tensor每一维所需要的字节数,是一个tuple。

x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)

print("x_shape:", x.shape)
print("x_dtype:", x.dtype)
print("x_itemsize:", x.itemsize)
print("x_nbytes:", x.nbytes)
print("x_ndim:", x.ndim)
print("x_size:", x.size)
print("x_strides:", x.strides)

x_shape: (2, 2)
x_dtype: Int32
x_itemsize: 4
x_nbytes: 16
x_ndim: 2
x_size: 4
x_strides: (8, 4)

张量索引

Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:和 …用于对数据进行切片。

tensor = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))

print("First row: {}".format(tensor[0]))
print("value of bottom right corner: {}".format(tensor[1, 1]))
print("Last column: {}".format(tensor[:, -1]))
print("First column: {}".format(tensor[..., 0]))
print("First column: {}".format(tensor[:, 0]))

First row: [0. 1.]
value of bottom right corner: 3.0
Last column: [1. 3.]
First column: [0. 2.]
First column: [0. 2.]

张量运算

张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似,下面介绍其中几种操作。

普通算术运算有:加(+)、减(-)、乘(*)、除(/)、取模(%)、整除(//)。

x = Tensor(np.array([1, 2, 3]), mindspore.float32)
y = Tensor(np.array([4, 5, 6]), mindspore.float32)

output_add = x + y
output_sub = x - y
output_mul = x * y
output_div = y / x
output_mod = y % x
output_floordiv = y // x

print("add:", output_add)
print("sub:", output_sub)
print("mul:", output_mul)
print("div:", output_div)
print("mod:", output_mod)
print("floordiv:", output_floordiv)

add: [5. 7. 9.]
sub: [-3. -3. -3.]
mul: [ 4. 10. 18.]
div: [4. 2.5 2. ]
mod: [0. 1. 0.]
floordiv: [4. 2. 2.]

concat将给定维度上的一系列张量连接起来。

data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.concat((data1, data2), axis=0)
output1 = ops.concat((data1, data2), axis=1)

print(output)
print("shape:\n", output.shape)
print(output1)
print("shape:\n", output1.shape)

[[0. 1.]
[2. 3.]
[4. 5.]
[6. 7.]]
shape:
(4, 2)
[[0. 1. 4. 5.]
[2. 3. 6. 7.]]
shape:
(2, 4)

stack则是从另一个维度上将两个张量合并起来。

data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.stack([data1, data2])

print(output)
print("shape:\n", output.shape)

[[[0. 1.]
[2. 3.]]

[[4. 5.]
[6. 7.]]]
shape:
(2, 2, 2)

Tensor与NumPy转换

Tensor可以和NumPy进行互相转换。

Tensor转换为NumPy

与张量创建相同,使用 Tensor.asnumpy() 将Tensor变量转换为NumPy变量。

t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))

t: [1. 1. 1. 1. 1.] <class ‘mindspore.common.tensor.Tensor’>
n: [1. 1. 1. 1. 1.] <class ‘numpy.ndarray’>

NumPy转换为Tensor

使用Tensor()将NumPy变量转换为Tensor变量。

n = np.ones(5)
t = Tensor.from_numpy(n)

np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))

n: [2. 2. 2. 2. 2.] <class ‘numpy.ndarray’>
t: [2. 2. 2. 2. 2.] <class ‘mindspore.common.tensor.Tensor’>

稀疏张量

稀疏张量是一种特殊张量,其中绝大部分元素的值为零。

在某些应用场景中(比如推荐系统、分子动力学、图神经网络等),数据的特征是稀疏的,若使用普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销。这时就可以使用稀疏张量来表征这些数据。

MindSpore现在已经支持最常用的CSR和COO两种稀疏数据格式。

常用稀疏张量的表达形式是<indices:Tensor, values:Tensor, shape:Tensor>。其中,indices表示非零下标元素, values表示非零元素的值,shape表示的是被压缩的稀疏张量的形状。在这个结构下,我们定义了三种稀疏张量结构:CSRTensor、COOTensor和RowTensor。

CSRTensor

CSR(Compressed Sparse Row)稀疏张量格式有着高效的存储与计算的优势。其中,非零元素的值存储在values中,非零元素的位置存储在indptr(行)和indices(列)中。各参数含义如下:

indptr: 一维整数张量, 表示稀疏数据每一行的非零元素在values中的起始位置和终止位置, 索引数据类型支持int16、int32、int64。

indices: 一维整数张量,表示稀疏张量非零元素在列中的位置, 与values长度相等,索引数据类型支持int16、int32、int64。

values: 一维张量,表示CSRTensor相对应的非零元素的值,与indices长度相等。

shape: 表示被压缩的稀疏张量的形状,数据类型为Tuple,目前仅支持二维CSRTensor。

CSRTensor的详细文档,请参考mindspore.CSRTensor

下面给出一些CSRTensor的使用示例:

indptr = Tensor([0, 1,2])
indices = Tensor([0, 1,2])
values = Tensor([1, 2,3], dtype=mindspore.float32)
shape = (2, 4)

# Make a CSRTensor
csr_tensor = CSRTensor(indptr, indices, values, shape)

print(csr_tensor.astype(mindspore.float64).dtype)
print(csr_tensor)

Float64
CSRTensor(shape=[2, 4], dtype=Float32, indptr=Tensor(shape=[3], dtype=Int64, value=[0 1 2]), indices=Tensor(shape=[3], dtype=Int64, value=[0 1 2]), values=Tensor(shape=[3], dtype=Float32, value=[ 1.00000000e+00 2.00000000e+00 3.00000000e+00]))

上述代码会生成如下所示的CSRTensor:
在这里插入图片描述

COOTensor

COO(Coordinate Format)稀疏张量格式用来表示某一张量在给定索引上非零元素的集合,若非零元素的个数为N,被压缩的张量的维数为ndims。各参数含义如下:

indices: 二维整数张量,每行代表非零元素下标。形状:[N, ndims], 索引数据类型支持int16、int32、int64。

values: 一维张量,表示相对应的非零元素的值。形状:[N]。

shape: 表示被压缩的稀疏张量的形状,目前仅支持二维COOTensor。

COOTensor的详细文档,请参考mindspore.COOTensor

下面给出一些COOTensor的使用示例

indices = Tensor([[0, 1], [1, 2]], dtype=mindspore.int32)
values = Tensor([1, 2], dtype=mindspore.float32)
shape = (3, 4)

# Make a COOTensor
coo_tensor = COOTensor(indices, values, shape)

print(coo_tensor.values)
print(coo_tensor.indices)
print(coo_tensor.shape)
print(coo_tensor.astype(mindspore.float64).dtype)  # COOTensor to float64

[1. 2.]
[[0 1]
[1 2]]
(3, 4)
Float64

上述代码会生成如下所示的COOTensor:
在这里插入图片描述

总结

本文主要是针对张量进行了学习,描述了张量与标量、向量、矩阵的关系,以及如何去构建张量,如何查看张量的属性,查询张量中的元素和对张量切片与numpy相似,numpy和Tensor之间的相互转换,张量的计算,包括加减乘除、取模、整除,最后描述了张量的稀疏表示包括COOTensor 和CSRTensor。

本文来源:

https://easyai.tech/ai-definition/scalar/
https://cloud-cda69035-8e9f-48bc-9638-b7abce782352.xihe.mindspore.cn/lab/tree/%E5%88%9D%E5%AD%A6%E5%85%A5%E9%97%A8/%E5%88%9D%E5%AD%A6%E6%95%99%E7%A8%8B/03-%E5%BC%A0%E9%87%8FTensor.ipynb

  • 20
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值